التمرين الأول:

R مثل الشكل المقابل دارة كهربائية تحتوي على مكثفة مشحونة ، سعتها $C=56~\mu$ والتوتر بين طرفيها E=4,0~V ، ناقل أومي مقاومته

. وقاطعة $=100\Omega$

 u_{C} نقوم بغلق القاطعة . ماهي قيمة التوتر $t\!=0$

بين طرفي المكثفة عند هذه اللحظة ؟

 $u_{\rm C}$. أو جد المعادلة التفاضلية التي يحققها التوتر $u_{\rm C}$ بين طرفي المكثفة .

 $-\frac{t}{-}$

- . تأكد أن المعادلة التفاضلية . $e^{- au}$ $u_{
 m C}={
 m E}$ تعتبر حلا للمعادلة التفاضلية .
 - $t>\!\!0$ أعط عبارة طاقة المكثفة بدلالة الزمن وهذا من أجل $t>\!\!0$
- $t=10 \; \text{ms}$ من أجل من أجل من أحل الطاقة من أجل من أجل الثاني:

نقيس التوتر الكهربائي u(t) بين قطبي مكثفة في حالة تفريغ عبر ناقل أومي R بدلالة الزمن فنحصل على الشكل المرفق.

- 1. استنتج من المنحني البياني ثابت الزمن au للدارة .
- $C=100\mu F$: إذا كانت قيمة سعة المكثفة هي2

أحسب قيمة المقاومة R .

التمرين الثالث:

نعتبر الدارة المبينة على الشكل:

- i أربط بين : u_1 و u_2 و i بتطبيق قانون التوترات . 1
- . أكتب علاقة بين i:i و u_1 من جهة وi:i و u_2 من جهة .
- $\frac{dq_1}{dt}$ i = المكثفات للحصول على q_2 و q_1 أين يجب وضع q_1 و يجب وضع 3.

R c

2-1 2 3 4 5 6 7 t(s)

 C_1 C_2 C_2 C_2

و $i=rac{dq_2}{dt}$ وما هي إذا العلاقة بين u_1 و q_1 من جهة وبين u_2 و q_2 من جهة ثانية .

التمرين الرابع:

. q_0 ناقل أومي مقاومته R مربوط بين طرفي مكثفة سعتها C وشحنتها الابتدائية

المكثفة تتفرغ عبر المقاومة R .

- . بين أن الشحنة الكهربائية للمكثفة تحقق المعادلة التفاضلية التالية : q(t) + au = 0 وأن τ : ثابت يطلب كتابة عبارته . 1
 - τ ما هي وحدة الثابت τ ?
 - . A عدد الثابت، $q(t)=e^{-rac{t}{ au}}A$: حدد الثابت على من الشكل على على على على على على على على على $q(t)=e^{-rac{t}{ au}}$
 - . q(t) : مثل المنحنى البياني للشحنة 4

التمرين الخامس:

مكثفة سعتها C تشحن باستعمال دارة تحتوي على ناقل أومى مقاومته R ومولد قوته المحركة الكهربائية E

1. أكتب المعادلة التفاضلية الموافقة لعملية الشحن باستعمال المقادير R ، E ، C من جهة والدالة الموالية ومشتقاتما

. $u_R(t)$ ، د i(t) ، ج ، $u_c(t)$ ، ب ، q(t) ، أ

2. قارن هذه المعادلات . ماذا تستنتج ؟

الأستاذ: عجيل

التمرين الأول:

R مقاومته ، ناقل أومي مقاومته ، سعتها $C=56~\mu F$ والتوتر بين طرفيها E=4,0~V ، ناقل أومي مقاومته

 $\Omega = 100$ وقاطعة .

 u_C في اللحظة $\mathrm{t}=0$ نقوم بغلق القاطعة . ماهي قيمة التوتر t

بين طرفي المكثفة عند هذه اللحظة ؟

 $u_{\rm C}$. أوجد المعادلة التفاضلية التي يحققها التوتر $u_{\rm C}$ بين طرفي المكثفة .

. تأكد أن المعادلة التفاضلية . $e^{-rac{\epsilon}{ au}}$ يعتبر حلا للمعادلة التفاضلية . 3

t > 0 عبارة طاقة المكثفة بدلالة الزمن وهذا من أجل + 0

t = 10 ms ثم من أجل $t = \tau$ ثم من أجل هذه الطاقة من أجل الثاني:

نقيس التوتر الكهربائي u(t) بين قطبي مكثفة في حالة تفريغ عبر ناقل أومى R بدلالة الزمن فنحصل على الشكل المرفق.

1. استنتج من المنحني البياني ثابت الزمن au للدارة .

 $C=100\mu F$. إذا كانت قيمة سعة المكثفة هي

أحسب قيمة المقاومة R .

التمرين الثالث:

نعتبر الدارة المبينة على الشكل:

. أربط بين : u_1 و u_2 و i بتطبيق قانون التوترات . 1

. أكتب علاقة بين i و u_1 من جهة وi و u_2 من جهة .

 $\frac{dq_1}{dt}$ i = للمكثفات للحصول على q_2 و q_1 أين يجب وضع q_1 و q_2

و ما هي إذا العلاقة بين u_1 و q_1 من جهة وبين u_2 و q_2 من جهة ثانية . dq_2 أنية .

التمرين الرابع:

. q_0 ناقل أومي مقاومته R مربوط بين طرفي مكثفة سعتها C وشحنتها الابتدائية

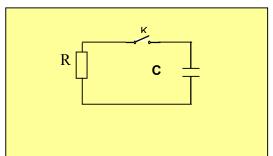
المكثفة تتفرغ عبر المقاومة R .

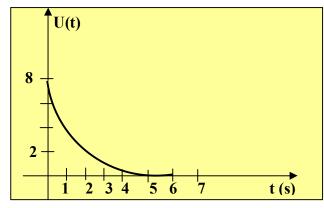
. يين أن الشحنة الكهربائية للمكثفة تحقق المعادلة التفاضلية التالية : q(t) + au = 0 وأن au : ثابت يطلب كتابة عبارته . 1

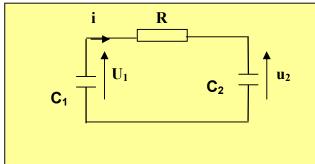
2. ما هي وحدة الثابت τ ؟

. A على الشكل $q(t)=e^{-rac{t}{ au}}$ على على على على على الشكل على على على على على على على على q(t)=0

. $\mathbf{q}(t)$: مثل المنحني البياني للشحنة


التمرين الخامس:


مكثفة سعتها C تشحن باستعمال دارة تحتوي على ناقل أومى مقاومته R ومولد قوته المحركة الكهربائية E


1. أكتب المعادلة التفاضلية الموافقة لعملية الشحن باستعمال المقادير R ، E ، C من جهة والدالة الموالية ومشتقاتما

 $u_R(t)$ ، د، i(t) ، $u_c(t)$ ، $u_c(t)$ ، q(t) ،

2. قارن هذه المعادلات . ماذا تستنتج ؟

الأستاذ: عجيل