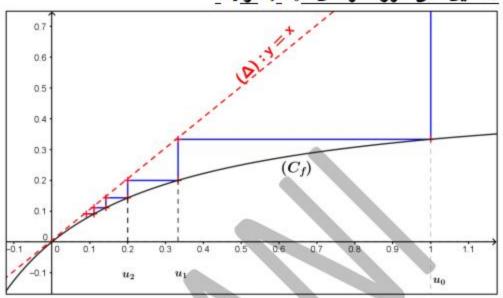
أ) تمثيل على محور الفواصل ، u1. u و u2 و

ب، تخمين حول إتجاه تغير المتالية (u,)و «u المتالية (u)

 $u_0 > u_1 > u_2$ نلاحظ أن و عليه التخمين يكون أن المتتالية (u,) متناقصة تماما وأن u = 0 عماما



2) أ) حساب القيم ٥٠، ٧٠ و ٧:

$$v_2 = \frac{1}{u_2} = \frac{2u_1 + 1}{u_1} = \frac{\frac{2}{3} + 1}{\frac{1}{3}} = \frac{\frac{5}{3}}{\frac{1}{3}} = 5$$
 $v_1 = \frac{1}{u_1} = \frac{2u_0 + 1}{u_0} = \frac{2 + 1}{1} = 3$ $v_0 = \frac{1}{u_0} = \frac{1}{1} = 1$

ب برهان أن (v_n) متتالية حسابية أساسها 2:

 $v_{n+1} = \frac{1}{u_{n+1}} = \frac{2u_n + 1}{u_n} = 2 + \frac{1}{u_n} = 2 + v_n$ (n and in a distribution) $v_0 = 1$ اذن (v_n) متتالية حسابية أساسها r = 2 و حدها الأول

 $v_n = 1 + 2n$: من أجل كل عدد طبيعي $v_n = v_0 + nr$ ، $v_n = v_0 + nr$ ، من أجل كل عدد طبيعي

 $u_n = \frac{1}{2n+1}$: $u_n = \frac{1}{v}$ ومنه $u_n = \frac{1}{v}$ ومنه $v_n = \frac{1}{u}$. الدينا $u_n = \frac{1}{2n+1}$

 $\lim_{n\to\infty} v_n = \lim_{n\to\infty} (2n+1) = +\infty$ وعليه المتتالية د) حساب "V lim v و "Lim u و "

. $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{2n+1} = 0$ و عليه المتتالية $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{2n+1} = 0$

3) حساب الجموعين:

$$S_{1} = \frac{1}{u_{0}} + \frac{1}{u_{1}} + \dots + \frac{1}{u_{n}} = v_{0} + v_{1} + \dots + v_{n} = \frac{n+1}{2} (v_{0} + v_{n}) = \frac{(n+1)(2n+2)}{2} = (n+1)^{2}$$

$$S_{2} = u_{0}v_{0} + u_{1}v_{1} + \dots + u_{2016}v_{2016} = \left(u_{0} \times \frac{1}{u_{0}}\right) + \left(u_{1} \times \frac{1}{u_{1}}\right) + \dots + \left(u_{2016} \times \frac{1}{u_{2016}}\right) = \underbrace{1 + 1 + \dots + 1}_{2017} = 2017$$

الجزء1: تعيين العددين الحقيقيين b و c:

$$g'(x)=1-\frac{c}{(x+1)^2}: \mathbb{R}-\{-1\}$$
 من أجل كل عدد حقيقي x من أجل كل عدد حقيقي

$$\begin{cases} g'(0)=-3 \\ g(0)=3 \end{cases}$$
 منحنى الدالة g يقبل عند النقطة $A(0;3)$ ماسا معامل توجيه $G(C_g)$

$$g(x)=x-1+rac{4}{x+1}$$
 ومنه: $\begin{cases} c=4 \\ b=-1 \end{cases}$ تكافئ $\begin{cases} 1-c=-3 \\ b+c=3 \end{cases}$

$$D_r = \mathbb{R} - \{-1\}$$
, $f(x) = \frac{x^2 + 3}{x + 1}$ $\frac{2}{x + 1}$

f(x) = g(x)، $\mathbb{R} - \{-1\}$ من اجل من اجل من احل من احل من اعلى التحقق أنه من احل م

$$g(x) = x - 1 + \frac{4}{x+1} = \frac{(x-1)(x+1) + 4}{x+1} = \frac{x^2 - 1 + 4}{x+1} = \frac{x^2 + 3}{x+1} = f(x)$$
 : $\mathbb{R} - \{-1\}$ in $x \to x$ and $x \to x$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{x} = \lim_{x \to -\infty} x = -\infty$$

$$\begin{cases} \lim_{x \to -1} x^2 + 3 = 4 \\ \lim_{x \to -1} x + 1 = 0^- \end{cases} \quad \text{i.i.m.} \quad f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty$$

$$\begin{cases} \lim_{\substack{x \to -1 \\ x \xrightarrow{\sum_{i=1}^{N}} x^{2} + 3 = 4 \\ \lim_{\substack{x \to -1 \\ x \xrightarrow{\sum_{i=1}^{N}} x^{2} + 1 = 0^{+}}}} \forall i : \lim_{\substack{x \to -1 \\ x \xrightarrow{\sum_{i=1}^{N}} x^{2} + 3 = 4}} f(x) = +\infty$$

:f'(x) - 3

 $\mathbb{R} - \{-1\}$ من اجل کل عدد حقیقی x من

$$f'(x) = \frac{2x(x+1) - (x^2+3)}{(x+1)^2} = \frac{2x^2 + 2x - x^2 - 3}{(x+1)^2} = \frac{x^2 + 2x - 3}{(x+1)^2} = \frac{(x-1)(x+3)}{(x+1)^2}$$

4) تعيين إتجاه تغير الدالة f ثم تشكيل جدول التغيرات:

 $(x+1)^2 > 0$ لأن (x-1)(x+3) لدينا إشارة f'(x) من إشارة f'(x) من إشارة

All the second					, , ,		
X	-∞	-3		-1		1	+∞
f'(x)	+	0	-		-	0	+

f دالة متز ايدة تماما على الجال [3-:∞-[و على الجال]∞+;1]

f دالة متناقصة تماما على الجال [1;1-[و على الجال]1-;3-

جدول التقرات:

X	-∞ -3	-1 1 +∞
f'(x)	+ 0 -	- - +
f(x)	-∞ / ⁻⁶ \	_∞ +∞ 2 +∞

ثانوية خالص سليمان – بشلول تصحيح اختبار الفصل الثاني 5/أ)تبيان أن (C،)يقبل مستقيم مقارب مائل:

$$\lim_{|x| \to +\infty} \left[f(x) - (x-1) \right] = \lim_{|x| \to +\infty} \left[x - 1 + \frac{4}{x+1} - x + 1 \right] = \lim_{|x| \to +\infty} \frac{4}{x+1} = 0$$

 (C_r) اذن المستقيم (Δ) ذو المعادلة y = x - 1 أذن المستقيم (Δ)

ب) دراسة وضعية (C_r) بالنسبة لـ (Δ) :

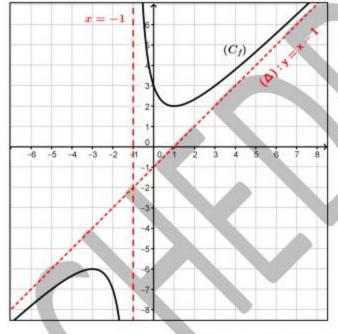
$$f(x)-(x-1)=\frac{4}{x+1}$$
 ندرس إشارة الفرق $\mathbb{R}-\{-1\}$ من أجل كل عدد حقيقي x من أجل كل عدد حقيقي

6) معادلة المماس (Δ) عند النقطة ذات الترتيبة 3:

لدينا النقطة ذات الترتيبة 3 فاصلتها 0 (حسب الجزء1) وعليه معادلة الماس (۵) هي:

$$y = -3x + 3$$
 $y = f'(0)(x-0) + f(0)$

7) الرسم (C,) و (A) :



8) حلول المعادلة f(x)=m بيانيا يعود الي تعيين y = m مع المستقيم (C_r) بقراءة بيانية نجد أن المعادلة f(x)=m تقبل حلين مختلفين في الإشارة من أجل:]3;+∞ .

III) تعيين إتجاه تغير الدالة h:

h'(x) = 2f'(2x+1) : $\mathbb{R} - \{-1\}$ من اجل کل عدد حقیقی x من اجل کل عدد حقیقی إشارة h'(x) من إشارة f'(2x+1)

0 ≤ (2x+1) من أجل 1 ≤ 1+2 أو 3-≥2x+1 أي 2 ≥0 أو 2-≥x

 $-2 \le x < -1$ أو $-1 < x \le 0$ أي $-1 < x \le 0$ أو $-1 < 2x + 1 \le 0$ أو $-1 < 2x + 1 \le 0$

$$[-\infty; -2]$$
 و $[0; +\infty]$ عليه $[0; +\infty]$ و $[-2; -1]$ و $[-2; -1]$ و $[-2; -1]$ و $[-2; -1]$