التمرين الأول.

- . حل في \Re المعادلة : $\theta = 1$ المثلثية . $2Sin^2(x) + 3Sin(x) + 1 = 0$ ثم مثل صور الحلول على الدائرة المثلثية .
 - $-2Cos^2(x)+3Sin(x)+3=0$ استنتج في المجال $]-\pi,\pi]$ حلول المعادلة 2.

التمرين الثاني:

- (o; i, j) المستوي منسوب إلى معلم متعامد و متجانس (I
- . [AB] و (4,0) و (4,0) و (4,0) و النقطة ذات الإحداثيات القطبية و (4,0) ، النقطة ذات الإحداثيات الديكارتية (4,0) و النقطة ذات الإحداثيات القطبية (4,0) ، النقطة ذات الإحداثيات القطبية ألم المراحد ألم المراحد
 - 1) أنشئ الشكل المناسب ثم عين الإحداثيات الديكارتية للنقطتين: B و H .
 - (i,\overline{OH}) ما هي طبيعة المثلث OAB ، أستنتج قيسا للزاوية الموجهة (i,\overline{OH}) .
- ACمستطیل حیث AB = 10 ، AB = 10 و AB و AB مسقطی AB علی الترتیب علی المستقیم ABCD (II
 - . \overrightarrow{AB} . \overrightarrow{AD} أحسب الجداء السلمي (1
 - . $D\hat{A}C$ ثم عين القيمة القربة لـ $\overline{AD}.\overline{AC}$ ثم أستنتج قيمة (2 أحسب الجداء السلمي $\overline{AD}.\overline{AC}$ ثم عين القيمة القربة لـ (2
 - D'B' أحسب الجداء السلمي $\overrightarrow{CA}.\overrightarrow{DB}$ ثم أستنتج الطول (3

التمرين الثالث:

المستوي منسوب إلى معلم متعامد و متجانس $(o;\vec{I},\vec{J})$ نعتبر (C)مجموعة النقط (x,y) من المستوي التي تحقق المعادلة (x,y) المستوي التي تحقق المعادلة (x,y)

- بین أن(c) دائرة یطلب تعیین مرکز ها I وطول نصف قطر ها (1)
- A تأكد من أن النقطة $A(2,\sqrt{3})$ تنتمي إلى الدائرة A(2)ثم أكتب معادلة المماس ($A(2,\sqrt{3})$ عند النقطة ($A(2,\sqrt{3})$
 - (C) أدرس وضعية المستقيم (Δ) الذي معادلته $y = \frac{2}{3}(x+1)$ الذي معادلته (3)
 - $x + \sqrt{3}y 7 = \theta$ مستقیم معادلته (7) (4
 - . B عند النقطة $B(4,\sqrt{3})$ تنتمي إلى $B(4,\sqrt{3})$ ثم بر هن أن $B(4,\sqrt{3})$ عند النقطة
 - $_{F}$ ب النقطة تقاطع $_{F}$ و $_{F}$ عين إحداثيي النقطة $_{F}$
 - IAFB أما طبيعة المثلث IAF ثم أحسب مساحة الرباعي

