# الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

السنة الدراسية: 2018/2017

المصدة: 7200 ثانية

مديرية التربية لولاية تمنغست - ثانوية الشيخ أمود

المستوى : الثانية ثانوي شعبتي الرياضيات و الرياضيات تقني

اختبار الثلاثي الأول في مادة الرياضيات

#### التمرين الأول ( 5 نقاط ):

 $P(x) = x^3 - 4x^2 + x + 6$  ليكن P(x) كثير حدود حيث P(x)

- با أحسب P(3) ماذا تستنتج ?
- . حلل P(x) الى جداء عوامل من الدرجة الأولى .
- . P(x)=0 التالية x المعادلة ذات المجهول x التالية R المعادلة ذات المجهول x التالية x

$$P\left(\frac{2018}{1439}\right)$$
 المتراجحة ذات المجهول  $x$  التالية  $P(x) \geq 0$  ثم استنتج إشارة والمحموعة الأعداد الحقيقية  $R$  المتراجحة ذات المجهول  $x$  التالية والمحموعة الأعداد الحقيقية والمتراجحة ذات المجهول  $x$  المتراجحة ذات المجهول  $x$  المتراجحة ذات المحمول  $x$  المحمول  $x$  المتراجحة ألم المحمول  $x$  المحمول

#### التمرين الثاني (6 نقاط ):

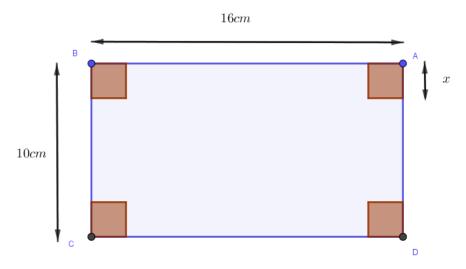
في المستوي المنسوب الى المعلم المتعامد المتجانس نعتبر النقط A(1;3) و A(1;3) و لتكن B مركز ثقل  $\overrightarrow{DA} - \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{0}$  و لتكن D مركز ثقل المثلث D و النقطة D معرفة بالعلاقة D مركز ثقل بالعلاقة D معرفة بالعلاقة D مركز ثقل بالعلاقة D معرفة بالعلاقة D مدرفة بالعلاقة كالعلاقة كالعلاقة

- A علم النقط A و B و A
- $D_{\mathfrak{g}}$  عين احداثيات النقطتان G
- 3) بين ان الرباعي متوازي أضلاع ABCD.
- بين أن النقط B و D و بين أن النقط B
- $\|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = 3 \|\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC}\|$  1 لتكن  $\|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\|$  من المستوي حيث  $\|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\|$  2 عين ثم أنشئ المجموعة  $\|\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC}\|$  3 عين ثم أنشئ المجموعة  $\|\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC}\|$  3 عين ثم أنشئ المجموعة  $\|\overrightarrow{MA} \overrightarrow{MB} \overrightarrow{MC}\|$  4 عين ثم أنشئ المجموعة  $\|\overrightarrow{MA} \overrightarrow{MB} \overrightarrow{MC}\|$  5 عين ثم أنشئ المجموعة  $\|\overrightarrow{MA} \overrightarrow{MB} \overrightarrow{MC}\|$  6 عين ثم أنشئ المحموعة  $\|\overrightarrow{MA} \overrightarrow{MB} \overrightarrow{MC}\|$ 
  - $\|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = 3 \|\overrightarrow{MA} \overrightarrow{MB}\|$  من المستوي حيث  $\|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = 3 \|\overrightarrow{MA} \overrightarrow{MB}\|$  عين ثم أنشئ المجموعة F .

#### التمرين الثالث ( 5 نقاط ):

دالة معرفة على  $\mathbb{R}$  بالعبارة  $f(x)=\frac{-x^2+ax+b}{x^2+1}$  حيث a عددان حقيقيان و  $f(x)=\frac{-x^2+ax+b}{x^2+1}$  متعامد متجانس .

#### الجزء الاول:


-1 عين العددان a علماً أن  $(C_f)$  يقبل في النقطة A(1;-3) مماسا معامل توجيهه يساوي

$$b=1$$
 ,  $a=-6$  نضع : الجزء الثاني :

- . f أدرس اتجاه تغير الدالة f
- [0;1] عين حصر للدالة f على المجال (2
- $(10^{-2}$  عين القيم الحدية المحلية للدالة f للدالة (3
- .0 أكتب معادلة الماس للمنحنى  $(C_f)$  عند النقطة ذات الفاصلة (4

# التمرين الرابع ( 4 نقاط )

انطلاقا من مستطيل بعداه 16; 10 بالسنتيمترات نصنع علبة على شكل متوازي مستطيلات قائم بالكيفية التالية: من كل ركن من أركان المستطيل نقطع مربعا طول ضلعه يساوي x ثم نرفع الجوانب بالطي كما هو موضح في الرسم. حدد قيمة x ليكون حجم العلبة أكبر ما يمكن



## التصحيح المفصل للاختبار الثلاثي الأول في مادة الرياضيات

#### التمرين الأول ( 5 نقاط ):

$$P(x) = x^3 - 4x^2 + x + 6$$
 ليكن  $P(x)$  كثير حدود حيث  $P(x)$ 

$$P(x) \perp P(3) = 3^3 - 4(3^2) + 3 + 6 = 27 - 36 + 9 = 0$$
 و منه 3 جذر لـ  $P(3) = 3^3 - 4(3^2) + 3 + 6 = 27 - 36 + 9 = 0$ 

الى جداء عوامل من الدرجة الأولى بطريقة هونر نشكل الجدول التالى 
$$P(x)$$

|   | 1 | - 4 | 1  | 6   |
|---|---|-----|----|-----|
| 3 | 0 | 3   | -3 | - 6 |
|   | 1 | - 1 | -2 | 0   |

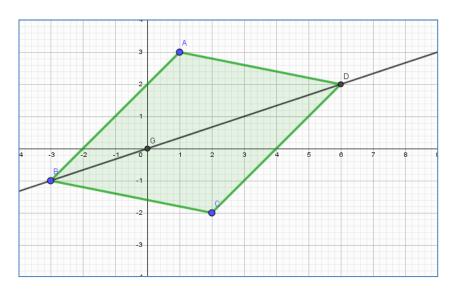
و منه نجد

$$P(x) = (x-3)(x+1)(x-2)$$
 ,  $P(x) = (x-3)(x-2) = (x+1)(x-2)$  ,  $P(x) = (x-3)(x^2-x-2)$ 

$$P(x)$$
 المتراجحة ذات المجهول  $x$  المتراجحة ذات المجهول  $x$  المتراجحة ذات المجهول  $x$  المتراجحة ذات المجهول  $x$  ندرس اشارة (4

| x                | -∞ -        | 1 2        | 2 3        | 3 +∞       |
|------------------|-------------|------------|------------|------------|
| (x-3) اشارة      | <del></del> | _          | _ (        | ) <u>+</u> |
| (x+1)(x-2) اشارة | +           | 0 _ 0      | ) <u>+</u> | +          |
| P(x) اشارة       | _ (         | ) <u>+</u> | <u> </u>   | 0 <u>+</u> |

 $S' = [-1;2] \cup [3;+\infty[$ من الجدول نستنتج حلول المتراجحة هي


$$P\left(\frac{2018}{1439}\right) \ge 0$$
 فإن  $1 \le \left(\frac{2018}{1439}\right) \le 2$  أن  $1 \le \left(\frac{2018}{1439}\right) = 1.4$  فإن  $1 \le \left(\frac{2018}{1439}\right) = 1.4$ 

. عدد موجب  $P\!\!\left(\frac{2018}{1439}\right)$  عدد موجب

### التمرين الثاني (6 نقاط ):

$$C$$
 و  $B$  و  $A$  تعليم النقط (1

$$\begin{cases} x_G = \frac{x_A + x_B + x_C}{3} \\ y_G = \frac{y_A + y_B + y_C}{3} \end{cases}$$
 visible in the property of th



$$G\left(0;0\right)$$
 و منه  $\begin{cases} x_G = 0 \\ y_G = 0 \end{cases}$  إذن  $\begin{cases} x_G = \frac{1-3+2}{3} \\ y_G = \frac{3-1-2}{3} \end{cases}$ 

لدينا (C;1),(B;-1),(A;1) يعني ان D مرجح الجملة (C;1),(B;-1),(A;1) و منه لدينا

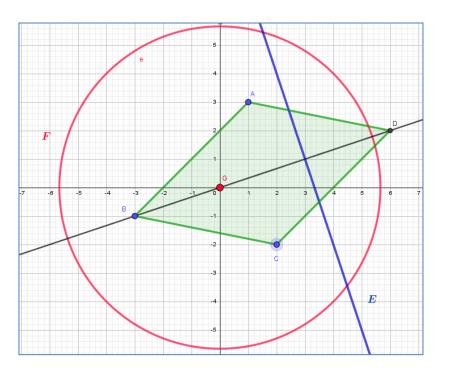
$$.D(6;2) \qquad \begin{cases} x_D = 0 \\ y_D = 2 \end{cases} \begin{cases} x_D = 1 + 3 + 2 \\ y_D = 3 + 1 - 2 \end{cases} \begin{cases} x_D = \frac{x_A - x_B + x_C}{1 - 1 + 1} \\ y_D = \frac{y_A - y_B + y_C}{1 - 1 + 1} \end{cases}$$

3) تبين ان الرباعي متوازي أضلاع ABCD

الدينا 
$$\overrightarrow{ABCD}$$
 الدينا  $\overrightarrow{ABCD}$  الدينا  $\overrightarrow{AB} = \overrightarrow{DC}$  الينا  $\overrightarrow{DC}$   $(-4;-4)$  متوازي اضلاع

[AC] بين أن النقط B و G و D في إستقامية : لتكن H منتصف القطعة المستقيمة (4

الدينا G مركز ثقل المثلث G أي اG مرجح الجملة  $\{(B;1), (H;2)\}$  حيث و منه G تنتمي الى المستقيم (1).....(BH)


يعني ان D مرجح الجملة  $\left\{ \left( B;-1\right) ,\,\left( H;2\right) \right\}$  و منه D تنتمي الى المستقيم D يعني ان D مرجح الجملة D مرجح الجملة D و منه D يعني الى المستقيم (2).....(BH)

من (1) و (2) نستنتج أن (2) و (3) من (1)

ن لتكن 
$$M$$
 بحموعة النقط  $M$  من المستوي حيث  $\|\overrightarrow{MA} + \overrightarrow{MC}\| = 3 \|\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC}\|$  تعني أن (5

E و منه MG=MD و منه MG=3MD و منه G=3MD محور القطعة المستقيمة GH

إنشاء المجموعة E .... في الشكل المقابل



M لتكن F مجموعة النقط M من المستوي حيث M لتكن F مجموعة النقط M المسكوي حيث  $MA + \overline{MB} + \overline{MC} = 3 \| \overline{MA} - \overline{MB} \|$  ناب المقابل  $MA + \overline{BM} = 3 \| \overline{MA} + \overline{BM} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{BM} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{BM} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{BM} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{BM} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{BM} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MA} + \overline{MB} \|$  أي ان  $AB = 3 \| \overline{MB} \|$  أي ان AB

### التمرين الثالث ( 5 نقاط ):

#### الجزء الاول:

تعين العددان a , a علماً أن  $(C_f)$  يقبل في النقطة A(1;-3) مماسا معامل توجيهه يساوي b , a

$$a+b=-5$$
.....(1) ایعنی ان  $\frac{-1+a+b}{2}=-3$  ای ان  $f(1)=-3$ 

و منه 
$$f'(x) = \frac{(-2x+a)(x^2+1)-2x(-x^2+ax+b)}{(x^2+1)^2}$$
 و لدينا  $f'(1)=-1$ 

$$-2-2b = -4 \quad \text{ (a)} \quad \frac{-a + (-2-2b) + a}{4} = -1 \qquad \text{ (b)} \quad f'(x) = \frac{-ax^2 + (-2-2b)x + a}{\left(x^2 + 1\right)^2}$$

a=-6 أي ان b=1 بالتعويض في b=1

#### الجزء الثاني :

دراسة اتجاه تغير الدالة 
$$f'(x) = \frac{-ax^2 + (-2 - 2b)x + a}{(x^2 + 1)^2}$$
 بالتعويض نجد (1

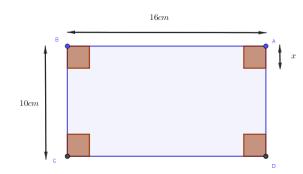
و منه لـ 
$$\Delta = 160$$
 خسب المميز  $\Delta = 160$  منه السلط  $\Delta = 160$  خسب المميز  $\Delta = 160$  و منه لـ  $\Delta = 160$  و منه لـ  $\Delta = 160$ 

$$\begin{bmatrix} x' = \frac{4 + 4\sqrt{10}}{12} = \frac{1 + \sqrt{10}}{3} \\ x' = \frac{4 - 4\sqrt{10}}{12} = \frac{1 - \sqrt{10}}{3} \end{bmatrix}$$
و منه  $f'$  موجبة على المجالين 
$$\begin{cases} x' = \frac{4 - 4\sqrt{10}}{12} = \frac{1 - \sqrt{10}}{3} \\ x'' = \frac{4 - 4\sqrt{10}}{12} = \frac{1 - \sqrt{10}}{3} \end{cases}$$

$$\left[\frac{1-\sqrt{10}}{3};\frac{1+\sqrt{10}}{3}\right]$$
 و  $f'$  سالبة على المجال  $f'$  و 
$$\left[\frac{1+\sqrt{10}}{3};+\infty\right[$$

$$\left[\frac{1+\sqrt{10}}{3};+\infty\right[_{g}\right]-\infty;\frac{1-\sqrt{10}}{3}$$
 و منه  $f$  متزایدة علی هذین المجالین

$$\left[rac{1-\sqrt{10}}{3};rac{1+\sqrt{10}}{3}
ight]$$
 .  $\left[rac{1-\sqrt{10}}{3};rac{1+\sqrt{10}}{3}
ight]$  .  $\left[rac{1-\sqrt{10}}{3};rac{1+\sqrt{10}}{3}
ight]$ 


تعين حصر للدالة 
$$f$$
 على المجال  $f(1) \le f(x) \le f(0)$  الدالة  $f$  متناقصة تماما على هذا المجال و منه  $f(1) \le f(x) \le f(x)$  أي ان  $f(1) \le f(x) \le f(x)$  أي ان  $f(1) \le f(x) \le f(x)$  أي ان  $f(1) \le f(x) \le f(x)$ 

$$f\left(\frac{1+\sqrt{10}}{3}\right) = -3.16$$
 و يعين القيم الحدية المحلية للدالة  $f\left(\frac{1-\sqrt{10}}{3}\right) = 3.16$  قيمة حدية محلية صغرى .

با ان y=f'(0)x+f(0) هي y=f'(0)x+f(0) عند النقطة ذات الفاصلة 0 هي الماس للمنحني (4

$$y = 6x + 1$$
 فإن  $f'(0) = 6$ ,  $f(0) = 1$ 

### التمرين الرابع ( 4 نقاط )



بعد عملية الطي و القص نحصل على علبة ارتفاعها هو x عرضها هو 10-2x و بعد عملية الطي و القص نحصل على علبة ارتفاعها هو x عرضها هو 10-2x و حجم العلبة طولها هو v(x) = x(10-2x)(16-2x) هو v(x) = x(10-2x)(16-2x) و منه  $v(x) = x(160-52x+4x^2)$  أي ان  $v(x) = x(160-52x+4x^2)$ 

$$v(x) = x(10-2x)(16-2x)$$
 هو

$$v(x) = 4x^3 - 52x^2 + 160x$$
 و منه  $v(x) = x(160 - 52x + 4x^2)$  أي ان

ندرس تغيرات الدالة ٧على المجال [5; 5]

$$v'(x) = 12x^2 - 104x + 160$$

$$\left\{ x' = rac{104 + 56}{24} = rac{160}{24} = rac{20}{3} 
ight.$$
 خسب المميز  $\Delta = 3136$  لاول  $\Delta = 3136$  الاول  $\Delta = 3136$  نحسب المميز  $\Delta = 3136$ 

و الثاني 2 داخلها مقبول