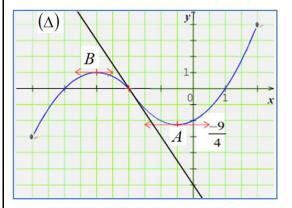
سلسلة تمارين الاشتقاقية (2) -الثانية ثانوي شعب الرياضيات و التقني


ریاضی و علوم تجریبیة :

الدالة المعرفة على D و C_f منحناها البياني في المستوي المنسوب f $(O; \overrightarrow{i}; \overrightarrow{j})$ wirelac I has label II.

التمرين 01 :

الدالة المعرفة على المجال $\left[-5;2
ight]$ بمنحناها البياني $\left(C_{f}
ight)$ و الماس fللمنحني (C_f) عند النقطة ذات الفاصلة (C_f) و النقطتين (Δ)

$$B(-3;1)$$
 $A(-\frac{1}{2};-\frac{9}{4})$

- $f'(-2) \circ f'(-\frac{1}{2}) \circ f(-3) \circ f(-2) \circ f(1)$.1 f'(-3)
 - f الدالة عبرات الدالة f
 - f عين القيم الحدية للدالة f
 - . [-5;2] على المجال f(x) عين حصراً لـ 4

نعتبر الدالة العددية $\,g\,$ المعرفة على $\,R\,$ بـ

. عددان حقیقیان b ; a حیث $g(x) = x^3 - 3x^2 + ax + b$

عين العددين b ; a مار بالنقطتين

.B(1;3);A(0;2)

- بـ R بعتبر الدالة العددية f المعرفة على R بـ II $f(x) = x^3 - 3x^2 + 3x + 2$
- . f الدالة المشتقة الأولى للدالة f عين عبارة f الدالة
- على المجال f على المجال على المجال f'(x) على المجال 2. [-1;3]
 - $\left[-1;3\right]$ على المجال والمناب الدالة f على المجال 3.
 - [-1;3] عين حصر الدالة f على المجال.
- .0 أكتب معادلة الماس (T) للمنحنى (C_f) عند النقطة ذات الفاصلة .5

- . f'(x)=3 labeled R . 6
- ج. هل توجد مماسات للمنحنى $\left(C_{f}\right)$ معامل توجيهها يساوي 3 $^{\circ}$
 - أكتب معادلة ديكارتية لكل منها إن وجدت .

التمرين 03

بـ
$$\left[-3 \; ; rac{3}{2} \; \right]$$
 بعتبر الدالة العددية f المعرفة على

- $f(x) = -x^3 3x^2 + 4$
- 1. أحسب الدالة المشتقة للدالة f ثم ادرس إشارتها .
- 2. أستنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها .
- نات الفاصلة (C_f) للمنحنى (T) المنحنى (T) عند النقطة ذات الفاصلة .3
 - . 4 هل توجد مماسات لـ $\left(C_{f}
 ight)$ معامل توجيهها هو 4.
- . أستنتج مقارنة بين العددين fig(1,009ig) و fig(1,009ig) مع التبرير.
- $f(x) = -(x+2)^2(x-1)$: x قىق ئائە من أجل كل عدد حقيقي .6 . مع حامل محور الفواصل $\left(C_{f}
 ight)$ مع مامل محور الفواصل
 - (T) . أرسم المنحنى $\left(C_{f}
 ight)$ و الماس .
- g(x)=f(|x|) بـ $\left|-\frac{3}{2};\frac{3}{2}\right|$ على الدالة المعرفة على 8. $\left(C_{f}
 ight)$ منحنی المنحنی بالاعتاد علی المنحنی أشرح کیفیة إنشاء المنحنی المنحنی

- . $P(x) = x^3 + 3x + 4$ ليكن $P(x) = x^3 + 3x + 4$ بـ $P(x) = x^3 + 3x + 4$
 - بانتج ؟ P(-1) ماذا تستنتج ؟
 - أعط تحليلا لكثير الحدود P.
- P(x) > 0 فإن -1 فإن عدد حقيقي x أُكبر من -1 فإن 3. P(x) < 0 فيقي من أجل كل عدد حقيقي x أصغر من x
 - $f(x) = \frac{x^3 2}{x^2 + 1}$ بعتبر الدالة العددية f المعرفة على R
 - : $\left[-2;2\right]$ من المجال x عدد حقیقی x من المجال x عدد 1. $f'(x) = \frac{x \times P(x)}{(x^2 + 1)}$
- على المجال $\left[-2;2\right]$ على المجال f'(x) على جدول تغيرات .2 . الدالة f على هذا المجال
 - الفاصلة (C_f) للمنحنى (D) المنحنى أكتب معادلة الماس (D) المنحنى 3
 - بـ $R \{-1\}$ بـ الدالة f المعرفة على I $f(x) = x + \alpha + \frac{\beta}{x+1}$

عين العددين lpha و eta بحيث يقبل المنحني $(C_{_f})$ في النقطة A(0;3) مماسأ معامل توجيهه يساوي 3-.

$$g(x) = \frac{2x}{x+1}$$
 نعتبر الدالة g المعرفة على - II

- g(0) .1
- 2. أحسب g'(x) ثم شكل جدول تغيرات الدالة g على $[-4;-1[\cup]-1;2]$
- (T) للمنحنى عند النقطة ذات الفاصلة (T) للمنحنى عند النقطة ذات الفاصلة .
 - . (T) النسبة للمستقيم ($C_{
 m g}$) بالنسبة للمستقيم 4.

$$h\left(x\right)=rac{2\left|x\right|}{\left|x\right|+1}$$
ب بـ R بـ الدالة h المعرفة على .5

- h أدرس شفعية الدالة h .
- $(C_{_g})$ نطلاقا من ($(C_{_h})$ انطلاقا من .7

$$f(x) = \frac{x^2 + ax + b}{x - 3}$$
 بعتبر الدالة العددية f المعرفة على $R - \{3\}$ ب $R - \{3\}$ عددان حقيقيان .

ين العددين
$$a$$
 ; a حيث تكون النقطة $H(2;-4)$ ذروة للمنحنى b ; a . (C_s)

- b=16 ; a=-8 نضع .2
- : $R \{3\}$ من x من أجل كل عدد حقيقي x من أجل أ.

$$f(x) = x - 5 + \frac{1}{x - 3}$$

- A(3;-2) بين أن النقطة A(3;-2) مركز تناظر للمنحنى
-] 3 ; 5] و $[1 \; ; \; 3 \; [$ على المجالين $[1 \; ; \; 3 \;]$ و $[5 \; ; \; 5 \;]$ ثم شكل جدول تغيراتها .
- . 1 أكتب معادلة المراس للمنحني $\left(C_{f}
 ight)$ عند النقطة ذات الفاصلة
 - ه. هل توجد مماسات للمنحني (C_f) توازي المستقيم ذو المعادلة
 - $g(x) = \frac{-x^2 8x 16}{x + 3}$ بـ R بالمعرفة على R بـ R بالمعرفة على 3.
 - $R-\{-3\}$ من أجل كل عدد حقيقي x من أجل كل عدد أ. g(x) = f(-x)
- . $\left(C_f\right)$ نطلاقا من المنحنى $\left(C_g\right)$ نطادة من المنحنى أستنتج كيفية إنشاء المنحنى

التمرين 07 :

مستطيل متلث متقايس الأضلاع طول ضلعه 4cm و MNPQ مستطيل ABCBQ = x داخل المثلث ABC نضع و MNPQ الدالة f ترفق بكل عنصر x مساحة المستطيل

f عين مجموعة تعريف الدالة f $MQ = x\sqrt{3}$ ب- أثبت أن

ج- عین عبارة f(x) مساحة

2. أ- ادرس اتجاه f تغير ثم شكل جدول تغيراتها

x المستطيل بدلالة

ب-استنتج وضعية النقطة $\,Q\,$ من أجل أن يكون مساحة المستطيل . أكبر ما يمكن MNPQ

المثل (C_f) المثل (Δ) : x=1 المثل البنت أن المستقيم المثل المثل المثل للدالة f في المستوي المنسوب الى معلم متعامد و المتجانس. $\left(C_{f}
ight)$ ب-أنشئ ج- أشرح كيف يمكن إنشاء المنحنى $\left(C_{g}
ight)$ الممثل للدالة انطلاقا من (C_f) نطلاقا من g(x) = f(x-2) + 1

التمرين 08 :

 $g(x) = 5x - x^2$ المعرفة على على كما يلى g.1 عين عبارة 'g ثم شكل جدول إشارتها .

> 2. ABCD مربع طول ضلعه ABCD نرسم المستطيل KLMN حيث

BK = BL = DM = DN = x نسمى S(x) مساحة المستطيل

x أعط مجال تغير x

[ML]; [MN] طول الضلعين x طول بدلالة x

S(x)=2g(x) ج عبارة S(x)=3 ثم تحقق أن

د - أعط جدول تغيرات الدالة S عين حينئذ قيمة x حتى تكون مساحة المستطيل KLMN أكبر ما يمكن.