ثانوية سي لعلى بن بوبكر الابيض سيدي الشيخ

اختبار الفصل الثاني في مادة الرياضيات

2020/2019

مديرية التربية لولاية البيض ثانوية

سي لعلي بن بوبكر الأبيسض سيدي

1ن

1ن

1ن

2ن

التوقيت: 8سا 10سا

مطومات و توجیهات عا

2-يمكن للطالب انجــاز التمارين حسب الترتيب الذي يناسبه

التمرين الأوّل (06 نقاط) _: ﴿
 من بين الاجابات المقترحة توجد اجابة وحيدة صحيحة حددها مع التعليل :

: قيس لزاوية فان قيسها الرئيسي هو 1439π قيس لزاوية فان قيسها الرئيسي هو

$$\frac{3\pi}{4}(\div) \qquad \qquad \frac{\pi}{4}(\cdot)$$

: الكتابة المبسطة للعبارة
$$E(x) = \cos(x) + \cos(x+\pi) + \cos(x+\pi$$

$$E\left(x
ight)=0$$
 (\Rightarrow $E\left(x
ight)=\cos\left(x
ight)$ (\Rightarrow $E\left(x
ight)=\sin\left(x
ight)$ (\Rightarrow

1ن
$$\cos\left(\frac{\pi}{8}\right) + \cos\left(\frac{3\pi}{8}\right) + \cos\left(\frac{5\pi}{8}\right) + \cos\left(\frac{7\pi}{8}\right)$$
 هي:

$$\sin \frac{\pi}{4} \Leftrightarrow \cos \frac{\pi}{4} \Leftrightarrow 0$$

$$= 10;2\pi$$
 المعادلة $= 1-\sqrt{2}\cos\left(x-rac{\pi}{3}
ight)$ المعادلة $= 0$

$$\left\{\frac{\pi}{12}; \frac{7\pi}{12}\right\} \left(\div \left\{ \frac{\pi}{6}; \frac{5\pi}{6} \right\} \left(\div \left\{ \frac{\pi}{3}; \frac{4\pi}{3} \right\} \right) \right\}$$

ن
$$B(x)=\sin(x+3\pi)+\cos(rac{\pi}{2}+x)+\cos(2019\pi-x)+\sin(x+rac{\pi}{2})$$
: $B(x)=\sin(x+3\pi)+\cos(rac{\pi}{2}+x)+\cos(2019\pi-x)+\sin(x+rac{\pi}{2})$

$$B(x) = -2\sin(x)$$
: اثبت انه من اجل کل عدد حقیقی x فان انه من اجل کا

$$Big(xig) = -\sqrt{2}$$
 :المعادلة: $ig[0;2\,\piig]$ المجال (2

1ن

1ن

1ن

2ن

1ن

1ن

 $\left[B(x)
ight]^2+5B(x)-6=0$: حل في المجال $\left[0;2\pi
ight]$ المعادلة ذات المجهول الحقيقيي x التاليــة $\left[0;2\pi
ight]$

التمرين الثالث (08 نقاط):

المنحنى البياني $f(x)=rac{2x^2+x+7}{x+1}$: بالدالسة المعرفة على $f(C_f)$ المنحنى البياني f

الممثل للدالــة f في المستوي المنسوب إلى معلم متعــامد ومتجانس $(O; \vec{i}; \vec{j})$.

ادالة f عند اطراف مجموعة تعريفها شم فسر النتائج بيانيا f

 $f\left(x
ight)=ax+b+rac{c}{x+1}$: اثبت انه من اجل کل عدد حقیقی x مــن x مــن xحيث a و b ; a عيينها

 $f'(x) = rac{2x^2+4x-6}{\left(x+1
ight)^2}$ فان: $\mathbb{R}-\left\{-1
ight\}$ فان: x + 2-(۱-2) بين انه مان اجل كل

ب) ادرس اتجاه تغیر الدالــة f شکل جــدول تغیّـراتها

 $\left(C_{f}
ight)$ مائل للمنحنى y=2x-1: الذي معادلته y=2x-1 معادلته المنحنى (Δ

 (Δ) ادرس وضعية المنحنى بالنسبة الى المستقيم

 $x_0=2$ النقطة A ذات الفاصلة (C_f) المنحنى المنحنى (T) اكتب معادلة المماس (T

 $\left(C_{f}
ight)$ ماذا تستنتج بالنسبة للمنحنى $f\left(-2-x
ight)+f\left(x
ight)=-6$: بين $f\left(-2-x
ight)$

انشىء كل مــن المنحنى و (C_f) و المماس و (C_f) المنحنى المقاربين (3

