$$n \in \mathbb{N} \quad \stackrel{\text{\tiny curl}}{\sim} \; , \qquad \begin{cases} a_{n+1} = \frac{1}{3} \big(2a_n + b_n \big) \\ b_{n+1} = \frac{1}{3} \big(a_n + 2b_n \big) \end{cases} \; , \; b_0 = 7, a_0 = 1$$

 $n \in \mathbb{N}$ من أجل كل , $u_n = b_n - a_n$ -1

$$\mathbf{0.5..}\,u_{\scriptscriptstyle n+1}=b_{\scriptscriptstyle n+1}-a_{\scriptscriptstyle n+1}=\frac{1}{3}ig(a_{\scriptscriptstyle n}+2b_{\scriptscriptstyle n}ig)-\frac{1}{3}ig(2a_{\scriptscriptstyle n}+b_{\scriptscriptstyle n}ig)=\frac{1}{3}ig(a_{\scriptscriptstyle n}+2b_{\scriptscriptstyle n}-2a_{\scriptscriptstyle n}-b_{\scriptscriptstyle n}ig)=\frac{1}{3}ig(b_{\scriptscriptstyle n}-a_{\scriptscriptstyle n}ig)=\frac{1}{3}u_{\scriptscriptstyle n}:n\in\mathbb{N}$$
 من أجل كل

$$2*0.5...$$
 $u_n = 6\left(\frac{1}{3}\right)^n$: $n \in \mathbb{N}$ كل عن الجل كل $u_0 = b_0 - a_0 = 7 - 1 = 6$ و حدهاالأول $\frac{1}{3}$ و حدهالأول $\frac{1}{3}$ و حداد $\frac{$

$$0.5....$$
 $b_n > a_n$: قبل $b_n - a_n > 0$ فبل کل $b_n - a_n > 0$ فبل کل $a_n = b_n - a_n = b_n - a_n = b_n$ لدينا

$$a_{n+1} - a_n = \frac{1}{3} (2a_n + b_n) - a_n = \frac{1}{3} (b_n - a_n)$$
 : $n \in \mathbb{N}$ من أجل كل $\underline{(a_n)}$ من أجل كل

0.5... و بالتالي المتتالية
$$(a_n)$$
 غان $a_{n+1}-a_n>0$ و منه $a_{n+1}-a_n>0$ و بالتالي المتتالية $a_n>0$ غان $a_$

0.5... ومنه
$$b_{n+1} - b_n \prec 0$$
 و بالتالي المنتالية (b_n) متناقصة ومنه $\frac{1}{3}(a_n - b_n) \prec 0$ فإن $a_n \succ a_n$ و بالتالي المنتالية $a_n \succ a_n$ و بالتالي المنتاليتان $a_n \succ a_n$ و بالتالي المنتاليتان و $a_n \succ a_n$ ومنه ومنه ومناقصة وم

$$\lim_{x \to +\infty} u_n = \lim_{x \to \infty} (b_n - a_n) = \lim_{x \to +\infty} \left[6 \left(\frac{1}{3} \right)^n \right] = 0$$
 المتتالية $\left(a_n \right)$ متزايدة و

$$(b_n)$$
 و (a_n) و المتتاليتان و المتتاليتان المتتاليتان و المتاليتان المتتاليتان المتتاليتان المتتاليتان المتتاليتان المتتاليتان المتعالم المتع

 $v_n=a_n+b_n \;,\; n\in\mathbb{N} \;$ من أجل كل 4

$$v_{n+1}-v_n=a_{n+1}+b_{n+1}-a_n-b_n=rac{1}{3}ig(2a_n+b_nig)+rac{1}{3}ig(a_n+2b_nig)=0$$
 , $n\in\mathbb{N}$ من أجل كل $v_n=v_0=8$: إذن المنتالية $v_n=v_0=8$

$$v_n = v_0 = 8$$
 : إذن المنتالية (v_n) ثابتة . أي : $v_n = v_0 = 8$

5- يما أن المتتاليتان $\left(a_{n}
ight)$ و متجاورتان فإلهما تؤلان إلى نفس النهاية وبالتالي فهما متقاربتان

$$\begin{cases} b_n = 4 + 3 \left(\frac{1}{3}\right)^n \\ a_n = 4 - 3 \left(\frac{1}{3}\right)^n \end{cases} \begin{cases} b_n = 4 + 3 \left(\frac{1}{3}\right)^n \\ a_n = 8 - b_n \end{cases} \begin{cases} 2b_n = 8 + 6 \left(\frac{1}{3}\right)^n \\ a_n + b_n = 8 \end{cases} \begin{cases} b_n - a_n = 6 \left(\frac{1}{3}\right)^n \\ a_n + b_n = 8 \end{cases}$$

$$egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} b_n &= \lim_{x o + \infty} b_n &= \lim_{x o + \infty} \left(4 + rac{1}{3^{n-l}}
ight) = 4 \end{aligned}$$
 $b_n &= 4 + rac{1}{3^{n-l}}$ $b_n &= 4 + rac{1}{3^{n-l}}$ $b_n &= 4 + rac{1}{3^{n-l}}$ $a_n &= 4 - rac{1}{3^{n-l}}$

التمرين الثانى: (05ن)

$$\left(O,\vec{i},\vec{j},\vec{k}
ight)$$
 الفضاء منسوب إلى معلم متعامد و متجانس

$$C(3,2,4) \cdot B(-3,-1,7) \cdot A(2,1,3)$$

$$\overrightarrow{AC}$$
 $\overrightarrow{AB} = k$: لا يوجد أي عدد حقيقي k حيث \overrightarrow{AC} (1, $\overrightarrow{1}$, 1)، \overrightarrow{AB} (-5, -2, 4) لا يوجد

مستقیم ذو التمثیل الوسیطي :
$$x=7+2t$$
 $y=-3t$ مستقیم ذو التمثیل الوسیطي : $y=-3t$ $z=4+t$

$$\vec{u} \cdot \overrightarrow{AC} = 2 - 3 + 1 = 0$$
 $\vec{u} \cdot \overrightarrow{AB} = -10 + 6 + 4 = 0$

$$\overline{f 01}$$
 عمودي على كل من $\overline{f AB}$ و $\overline{f AC}$ إذن $f (d)$ عمودي على المستوي $ar u$

لاينا المستقيم (
$$d$$
) عمودي على المستوي (d) إذن (d) إذن (d) أذن (d) عمودي على المستوي (d) وبالتالي المعادلة: (d) عمودي على معادلة لـ (d) عمودي على معادلة لـ (d)

$$d=-4$$
 و لدينا $A\in (ABC)$ و لدينا $A\in (ABC)$ و لدينا

$$2x - 3y + z - 4 = 0$$
 من الشكل: (ABC) من الشكل

$$(ABC)$$
 و المستوى (d) المستوى H /3

$$\{(A,-2),\overline{(B,-1)},(C,2)\}$$
 مرجح الجملة H مرجح الجملة

: النقطة
$$G$$
 مرجح الجملة $\{(A,-2),(B,-1),(C,2)\}$ يعني أن

: النقطة
$$\{(A,-2),(B,-1),(C,2)\}$$
 يعني ان

$$z_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = 5 \quad \mathbf{y} \quad y_G = \frac{-2 \times 1 - 1 \times \left(-1\right) + 2 \times 2}{-1} = -3 \quad \mathbf{x}_G = \frac{-2 \times 2 - 1 \times \left(-3\right) + 2 \times 3}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G = \frac{-2 \times 3 - 1 \times 7 + 2 \times 4}{-1} = -5 \quad \mathbf{y}_G =$$

و من جهة أخرى :
$$H \in (d) \cap (ABC)$$
 و من جهة أخرى : $H \in (d) \cap (ABC)$ و من جهة أخرى : $H \in (d) \cap (ABC)$

$$x=-5$$
 , $y=-3$, $z=5$: نجد (d) نجد التمثيل الوسيطي للمستقيم

$$\{(A,-2),(B,-1),(C,2)\}$$
 منطبقتان أي $\{(A,-2),(B,-1),(C,2)\}$ مرجح الجملة و $\{(A,-2),(B,-1),(C,2)\}$

$$\overline{MB} - \overline{MC} = -\overline{BC} = \overline{CB}$$
 و $-2\overline{MA} - \overline{MB} + 2\overline{MC} = -\overline{MH} = \overline{HM}$ * طبیعة Γ : لدینا *

انن:
$$0 = \frac{1}{MB} \cdot \frac{1}{MB} \cdot$$

$$\|\overline{MH}\| = \sqrt{29}$$
 يكافىء $\|-2\overline{MA} - \overline{MB} + 2\overline{MC}\| = \sqrt{29}$ يكافىء

وبالتالي
$$\Gamma_2$$
 هي سطح كرة مركزها H ونصف قطرها Γ_2

:
$$\overrightarrow{HM}$$
 $\overrightarrow{CB} = 0$ یعنی آن

$$*$$
 $\frac{\Gamma_2}{4}$ $\frac{\Gamma_1}{4}$ $\frac{\Gamma_2}{4}$ $\frac{\Gamma_1}{4}$ $\frac{\Gamma_2}{4}$ $\frac{\Gamma_2}{4}$

$$d(H, \Gamma_1) = \frac{|-2 \times (-5) + 3 + 5 - 18|}{\sqrt{6}} = \frac{0}{\sqrt{6}} = 0$$

 $f'(x) = \frac{1}{2} + \frac{\frac{1}{x} \times x - 1 - \ln(x)}{x^2} = \frac{x^2 - 2 \ln(x)}{x^2} = \frac{g(x)}{x^2}$ الدالة f قابلة للإشتقاق على المجال $g(x) = \frac{1}{2} + \frac{1}{x} \times x - 1 - \ln(x)$

×	0	+∞
f'(x)		+
f(x)	\	+∞

$$f''(x) = \frac{\frac{2(x^2-1)}{x} \times 2x^2 - 4x(x^2 - 2\ln(x))}{4x^4} = \frac{-4x + 8x\ln(x)}{4x^4} = \frac{-1 + 2\ln(x)}{x^3}$$
 يب/ الدالة f' قابلة للإشتقاق على المجال g' المجال g' على المجال g' المحال g' المحال

х	0		\sqrt{e}	+∞
إشارة(x)"f		_	0	+

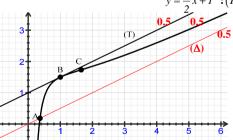
 $C\left(\sqrt{e}, \frac{e+3}{2\sqrt{e}}\right)$ الدالة f'' تنعدم من أجل $x=\sqrt{e}$ مغيرة إشارتها وبالتالي النقطة وبالتالي النقطة والمناس هي نقطة إنعطاف للمنحنى $x=\sqrt{e}$

 $x \in]0$, $+\infty[$ مع $f'(x) = \frac{1}{2}$ هي حل المعادلة : B مع B مع A

0.5....
$$B\left(1,\frac{3}{2}\right)$$
 این $x \in \left[0,+\infty\right[$ و بالتالی $x = 1$ و بالتالی $\frac{-\ln(x)}{x^2} = 0$ این $\frac{x^2 - 2\ln(x)}{x^2} - \frac{1}{2} = 0$ و بالتالی $f'(x) = \frac{1}{2}$

lpha وحيد f(x)=0 إذن المعادلة f(x)=0 مستمرة و متزايدة تماما على المجال g(x)=0 و تأخذ قيمها في

 $0.34 < \alpha < 0.35$ و منه $f(0.34) \times f(0.35) < 0$ إذن $f(0.35) \approx 0.03$ و منه $f(0.34) \approx -0.06$ و $y = \frac{1}{2}x + 1$: (T) ، $y = \frac{x}{2}$: (Δ) : (T) و (Δ) ، (C) رسم کل من (6)



$$n\in\mathbb{N}$$
 ، $X_n=e^{rac{n-2}{2}}$: الْجِزْءِ الثَّالَثُ : $X_n=e^{rac{n-2}{2}}$: الْجِزْءِ الثَّالَثُ : $X_{n+l}=e^{rac{n+l-2}{2}}=e^{rac{l}{2}}e^{rac{n-2}{2}}=e^{rac{l}{2}}X_n:n\in\mathbb{N}$ الْجِنْ لَكِلُ

 $0.5....X_o=rac{1}{e}$: وحدها الأول $X_o=rac{1}{e}$ وحدها الأول $X_o=rac{1}{e}$

$$X_{n+1} - X_n = e^{\frac{n+1-2}{2}} - e^{\frac{n-2}{2}} = e^{\frac{n-2}{2}} \left(e^{\frac{1}{2}} - I\right)$$

 $egin{aligned} \mathbf{0.5...} & e^{rac{l}{2}} - 1 \succ 0 \end{aligned}$ بماأن $e^{rac{l}{2}} - 1 \succ 0$ بماأن

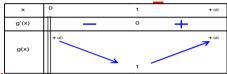
يست متقارية
$$\lim_{x \to +\infty} X_n = \lim_{x \to +\infty} \left(e^{rac{n-2}{2}}
ight) = +\infty$$
 : ابماان (X_n) الست المتتالية (X_n) المتتالية المتتالية (X_n)

$$0.5....$$
ون تقاطع Γ_2 و دانرة مركزها H ونصف قطرها Γ_2 و Γ_1 المن تقاطع Γ_2

 $D_g =]0$, $+\infty[$ ' $g(x) = x^2 - 2\ln(x)$ ' الجزء الأول : $g(x) = x^2 - 2\ln(x)$

0.25+0.25......
$$\lim_{\substack{x \to +\infty \\ x \to 0}} g(x) = +\infty$$
 9 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} g(x) = \lim_{\substack{x \to +\infty \\ x \to +\infty}} \left[x \left(x - \frac{2 \ln(x)}{x} \right) \right] = +\infty$ 1.

$$g(x) = 2x - 2 \times \frac{1}{x} = \frac{2(x^2 - 1)}{x}$$
: حيث $g(x) = 2x - 2 \times \frac{1}{x} = \frac{2(x^2 - 1)}{x}$ على المجال $g(x) = 2x - 2 \times \frac{1}{x} = \frac{2(x^2 - 1)}{x}$ الدالة $g(x) = 2x - 2 \times \frac{1}{x} = \frac{2(x^2 - 1)}{x}$



من جدول تغيرات الدالة g نستنتج أنه : من أجل كل $[g\,(x)\!\geq\!0\;,\;x\in]0$, $[g\,(x)\!\geq\!0\;,\;x\in]0$

$$f\left(x
ight)=rac{x}{2}+rac{1+ln\left(x
ight)}{x}$$
 , $D_{f}=\left]0,
ight.+\infty\right[$ /1

$$\lim_{x\to 0} f\left(x\right) = \lim_{x\to 0} \left[\frac{x}{2} + \frac{1 + \ln(x)}{x}\right] = \lim_{x\to 0} \left[\frac{1}{x}\left(\frac{x^2}{2} + 1 + \ln(x)\right)\right] = -\infty$$
. نستنتج أن المستقيم ذو المعادلة $x=0$ مستقيم مقلرب للمنحنى .

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[\frac{x}{2} + \frac{1 + \ln(x)}{x} \right] = \lim_{x \to +\infty} \left[\frac{x}{2} + \frac{1}{x} + \frac{\ln(x)}{x} \right] = +\infty \quad (1/2)$$

$$0.5..(C)$$
 ب $y = \frac{x}{2}$ مستقيم مقارب للمنحنى $\lim_{x \to +\infty} \left[f(x) - \frac{x}{2} \right] = \lim_{x \to +\infty} \left[\frac{1 + \ln(x)}{x} \right] = \lim_{x \to +\infty} \left[\frac{1}{x} + \frac{\ln(x)}{x} \right] = 0$

$$\begin{cases} y = \frac{x}{2} \\ y = \frac{x}{2} + \frac{I + \ln(x)}{x} \end{cases} \xrightarrow{\text{end do like the like of } (A) \text{ and do like the like of } (A) \text{ and do like } ($$

$$\textbf{0.5......} (C) \cap (\Delta) = \left\{ A\left(\frac{1}{e}, \frac{1}{2e}\right) \right\}$$
 افن $\begin{cases} y = \frac{1}{2e} \\ x = \frac{1}{e} \end{cases}$ ابن $\begin{cases} y = \frac{x}{2} \\ \frac{1 + \ln(x)}{x} = 0 \end{cases}$ $\begin{cases} y = \frac{x}{2} \\ y = \frac{x}{2} + \frac{1 + \ln(x)}{x} \end{cases}$: Light in the probability of th

$$\begin{bmatrix} f(x) - \frac{x}{2} \end{bmatrix} = \frac{I + \ln(x)}{x} : (\Delta) : (\Delta$$

$$(\Delta)$$
 من أجل كل (C) من أجل كل أحد أرك من أرك من أحد أرك من أرك من أحد أرك من أر