

السنة الدراسية : 1432/1431 هـ// 2010/2010 م

الامتحان الفصلي الأول

المستوى: الثالثة ثانوي علوم تجريبية.

اختبار في مادة : الرياضيات المحتبار في مادة : 03 ساعات ونصف

على المترشح أن يختار أحد الموضوعين التاليين

الموضوع الأول

التمرين الأول (04,5 نقاط) :

D = igl[-4;4 igr] فيما يلي (C_g) التمثيل البياني للدالة و على المجال

- $^\circ$ و تقبل الاشتقاق على $^\circ$ الدالة $^\circ$ و تقبل الاشتقاق على $^\circ$
- g'(x) عين بيانيا إشارة g(x) ثم إشارة 2.
- و. نعتبر الدالة $f(x) = e^{-g(x)}$: بD = [-4;4] على $f(x) = e^{-g(x)}$ ب
 - . g(x) و g'(x) بدلالة g'(x) و g'(x)
 - f اعط جدول تغیرات الداله f
- $g\left(x\right)=k$ المعادلة عدد وإشارة حلول المعادلة k

التمرين الثاني (08,5 نقاط):

$$f(x) = 1 - x + \frac{x}{\sqrt{x^2 + 1}}$$
: بالة عددية معرفة على f

 $(o; \vec{i}, \vec{j})$ التمثيل البياني للدالة f في المستوي المنسوب إلى معلم متعامد ومتجانس (C_f)

- f'(0) أثم استنتج f'(x).1.
- $1-(x^2+1)\sqrt{x^2+1} \leqslant 0: x$ عدد حقیقی عدد کل غدد من أجل کل عدد .2
 - fادرس تغيرات الدالة f.
- $-\infty$ بجوار (C_f) بجوار مائل للمنحني ((D): y = -x : بجوار 4.
- $+\infty$ بجوار (C_f) بجوار مائل للمنحني (C_f) بجوار (D'): y=-x+2 بجوار 5.

$$\frac{7}{4} < \alpha < 2$$
 تقبل حلا وحيدا α حيث $f(x) = 0$ تقبل على بر هن أن المعادلة $f(x) = 0$

- . (C_f) مركز تناظر لـ A(0;1) مركز مين أن النقطة (7.
 - (C_f) . أنشئ المنحني .8
- f(x) = -x + m : عدد حقيقي. ناقش بيانيا حسبب قيم m عدد حلول المعادلة m .9

التمرين الثالث (07 نقاط):

- $f(x) = 1 + e^{-x} 2e^{-2x}$ بنا الدالة f المعرّفة على \mathbb{R} بنا الدالة والمعرّفة على (I
- وحدة الرسم (C) التمثيل البياني للدالة f في المستوي المنسوب إلى معلم متعامد (C,\bar{i},\bar{j}) وحدة الرسم على محور الفواصل و8cm على محور القواصل و3cm
 - $P(X) = 1 + X 2X^{2}$. أ ليكن P كثير حدود معرف كما يلي $P(X) = 1 + X 2X^{2}$. أدرس إشارة P(X)
 - \mathbb{R} على على ب استنتج إشارة
 - (C) بالنسبة لمحور الفواصل جـ ماذا يمكن القول حول الوضع النسبي المنحني
 - ∞ . أوجد نهاية الدالة f عند ∞ + ثم فسر النتيجة بيانيا.
 - $f(x) = e^{-2x} (e^{2x} + e^x 2)$ فإن x من x فإن x من أجل كل x من أجل كل x عندx عند x عند x أم احسب نهاية الدالة x عند
- ل الدالة المشتقة للدالة f على \mathbb{R} . احسب f'(x) ثم أثبت أن إشارة f'(x) من إشارة f'(x) ثم أدرس إشارة f'(x)
 - f شكل جدول تغيرات الدالة f.
- 6. أثبت أن المنحني (C) يقطّع المستقيم (D) الذي معادلته y=1 في نقطة واحدة A يطلب إعطاء إحداثييها. ثم أدرس وضعية المنحني بالنسبة للمستقيم (D).
 - - (C) و (T) ثم المنحني (8.

الموضوع الثاني

التمرين الأول (03,5 نقاط):

 $f(x) = ax^3 + bx^2 + cx + d$: بالشكل \mathbb{R} بالشكل عددية معرفة على f

. $\left(O;\,ec{i}\;,ec{j}
ight)$ تمثيلها البياني في مستو منسوب إلى معلم متعامد ومتجانس $\left(\mathcal{G}_{\!\!f}
ight)$

باستعمال الشروط التالية، عين قيم الأعداد $c\cdot b\cdot a$ و d بحيث

- . (-4) يقطع محور التراتيب عند النقطة التي ترتيبها (G_f) المنحني (G_f)
- (-2) المنحني (\boldsymbol{C}) يقبل المستقيم ذا المعادلة y=5 x-12 مماساً له في النقطة التي فاصلتها (2
 - . يقبل النقطة ذات الفاصلة $\left(-\frac{2}{3}\right)$ نقطة انعطاف. (3
 - .(-1) يقبل مماسا أفقيا عند النقطة التي فاصلتها (G).

التمرين الثاني (80 نقاط):

 $f(x) = x\left(1 + \frac{1}{\sqrt{x^2 + 1}}\right)$: كما يلي \mathbb{R} كما يلي المعرفة على f

. $(o; \vec{i}, \vec{j})$ المتعامد والمتجانس و المنسوب إلى المعلم المتعامد والمتجانس (Γ)

/ 1

أثبت أن الدالة f فردية.

 $f'(x) = 1 + \frac{1}{(x^2 + 1)\sqrt{x^2 + 1}}$: leينا x عدد حقيقي x لدينا عدد حقيقي x عدد حقيقي x

- أدرس تغيرات الدالة f.
- أكتب معادلة للمماس (T) للمنحني (Γ) عند النقطة التي فاصلتها 0.
- أدرس وضعية (Γ) النسبة إلى (T) واستنتج أن (Γ) يقبل نقطة انعطاف يطلب تعيينها.
- بين أن المستقيم (d) ذا المعادلة y=x+1 مقارب للمنحني (d) في جوار $+\infty$ بين أن المستقيم (استنتج معادلة (d') المستقيم المقارب الآخر.
 - ارسم (d) و (d') و المعلم السابق.

$$g(x) = |x| \left(1 + \frac{1}{\sqrt{x^2 + 1}}\right)$$
: كما يلي \mathbb{R} كما يلي المعرفة على $g/3$

أ / بين أن الدالة g زوجية.

ب / انطلاقا من (Γ) أرسم (γ) منحنى الدالة g في نفس المعلم السابق.

التمرين الثالث (08,5 نقاط):

$$h(x) = x^2 e^{x-1} - \frac{x^2}{2}$$
 نعتبر الدالة h المعرفة على \mathbb{R} على الدالة المعرفة على الدالة الد

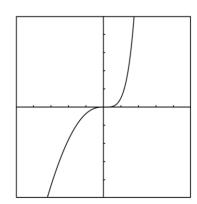
الجزء $\frac{1}{1}$: فيما يلي التمثيل البياني للدالة h في معلم متعامد. مقترح بو اسطة آلة حاسنة بيانية

1 / بقراءة بيانية ،ما تخمينك حول:

أ / اتجاه الدالة h في المجال [-3;2].

ب / الوضع النسبي لـ (C_h) بالنسبة للمحور ((x'x)).

في بقية التمرين سوف نتحقق حسابيا على صحة هذه التخمينات أو عدم صحتها



الجزء II التحقق من صحة التخمين الأول : الجزء II الجزء II الجزء h'(x) احسب (1) احسب h'(x) من أجل كل عدد حقيقي h'(x)

$$: \mathbb{R}$$
 بدلالة $u(x)$ حيث u دالة معرفة على بدلالة

(2

$$\lim_{x \to -\infty} u(x) = -1$$
: يعطى $\lim_{x \to +\infty} u(x)$

ب / احسب u'(x) وادرس إشارتها.

جـ / استنتج اتجاه تغيرات الدالة u ثم شكل جدول تغيراتها.

 $0,20 < \alpha < 0,21$: حيث α حيد u(x) = 0 تقبل حلا وحيدا u(x)

u(x) استنتج تبعا لx اشارة (استنتج

(3) أدرس إشارة h'(x) ثم استنتج اتجاه تغيرات الدالة h. ب ماذا عن صحة التخمين الأول ؟

الجزء III التحقق من صحة التخمين الثاني

 $(O; \vec{i}, \vec{j})$ التمثيل البياني للدالة h في معلم متعامد (C_h) نعبر

$$h(\alpha) = \frac{-\alpha^3}{2(\alpha+2)}$$
: أثبت أن (1

$$v(x) = \frac{-x^3}{2(x+2)}$$
: ب [0;1] ب المعرفة على المجال (2

أ / احسب v'(x) أجل كل x من المجال (0;1] ثم استنتج اتجاه تغيراتها في نفس المجال السابق

 $h(\alpha)$ ب / استنتج حصرا لـ

(x'x) مع المحور ((x'x)) مع المحور ((x'x)).

ب / حدد الوضع النسبي للمنحني (C_h) مع محور الفواصل.

جـ/ ماذا عن صحة التخمين الثاني؟

الجزء IV

باستعمال النتائج السابقة نحاول رسم (Γ) جزء من (C_h) على المجال [-0,2;0,4] في معلم متعامد $(o; \vec{i}, \vec{j})$ حسب الوحدات التالية:

- \bullet على محور الفواصل 1cm يمثل 0.05
- على محور التراتيب 1cm يمثل 0,001.

انقل هذا الجدول وأكمله باستعمال الآلة الحاسبة وتعطى النتائج على الشكل: $n imes 10^{-4}$ حيث (n عدد

											(C.		
0,4	0,35	0,3	0,25	0,2	0,15	0,1	0,05	0	-0.05	-0.1	-0.15	-0,2	x
													h(x)

 (Γ) أرسم