ثانوية بلحاج قاسم نور الدين - الشلف المستوى : 3 ثانوي علوم تجريبية

ا التمرين الأول:

- و $B\left(3;0;-2\right),A\left(2;1;2\right)$ نعتبر النقط ($O;\vec{i};\vec{j};\vec{k}$) و المتعامد و المتعامد و المتعامد و المتعامد و $C\left(1;-1;1\right)$
 - . اين أن النقط B,A و تعين مستويا (1
- (ABC) نم استنتج معادلة ديكارتية للمستوي $\vec{n}(-7;5;-3)$ ناظمي للمستوي ناطمي للمستوي ($\vec{n}(-7;5;-3)$
 - x-y+3=0 ليكن (P) المستوي ذي المعادلة (P) ليكن
 - (P) عن المستوي $\Omega(1;0;1)$ عن المستوي أ
 - (P) عين معادلة ديكارتية لسطح الكرة (S) التي مركزها النقطة Ω وتمس المستوي (P)
 - (Δ) و (ABC) متقاطعان وفق مستقيم ((ABC) و (P)
 - \mathbf{v} عين تمثيلا وسيطيا للمستقيم (Δ).
 - ج) أدرس الوضعية النسبية لسطح الكرة (S) و المستقيم (Δ) .

<u> التمرين الثاني:</u>

☞ الجزء الاول:

 $y'+y=2(x+1)e^{-x}$: المعادلة التفاضلية (E) التالية $\mathbb R$ المجموعة

- . (E) هي حل للمعادلة g المعرفة على g كما يلي g كما يلي g كما يلي g كما يلي أنبت أن الدالة g
 - y'+y=0: ب \mathbb{R} ب المعادلة التفاضلية (E') المعرفة على المجموعة (2
- . (E') هي حل للمعادلة (E) فقط إذا كانت الدالة (f-g) هي حل للمعادلة (E')
 - $\cdot(E)$ ثم استنتج حلول المعادلة (E')
 - . المعادلة (E) والذي يأخذ القيمة e من أجل القيمة f للمعادلة (E) والذي يأخذ القيمة e

🖘 الجزء الثاني:

 $f(x) = (x^2 + 2x + 2)e^{-x}$: يلي المجموعة \mathbb{R} كما يلي المعرفة على المعرفة المعرفة على المعرفة

- . $(O;\vec{i};\vec{j})$ المنحنى البياني الممثل للدالة f في المستوي المنسوب الى المعلم المتعامد و المتجانس (C_f)
 - . $\lim_{x \to -\infty} f(x)$ أحسب (1
 - . فسر النتيجة هندسيا . $\lim_{x\to +\infty} f(x)$ ثم أستنتج $\lim_{x\to +\infty} (x^2 e^{-x}) = 0$ بر هن أن $\lim_{x\to +\infty} (x^2 e^{-x})$
 - 3) أحسب عبارة f'(x) ثم أستنتج اتجاه تغير الدالة f و شكل جدول تغيرات الدالة
 - . يين أن المنحني (C_f) يقبل نقطتي انعطاف يطلب تعيينهما (4
 - .0 أكتب معادلة المماس (T) للمنحني في عند النقطة ذات الفاصلة (5
 - (C_f) و (T) ثم أرسم (T) و (2)، (-1)

∰ التمرين الثالث:

$$f\left(x\right) = \left(1 - \frac{1}{x}\right)\left(\ln(x) - 1\right)$$
 بالدالة العددية المعرفة على المجال $f\left(x\right) = \left(1 - \frac{1}{x}\right)\left(\ln(x) - 1\right)$ بالدالة العددية المعرفة على المجال

نسمي (C_f) المنحني البياني الممثل للدالة f في المستوي المنسوب الى المعلم المتعامد و المتجانس (C_f) حيث (C_f) المنحني البياني الممثل للدالة f في المستوي المستوي المنسوب الى المعلم المتعامد و المتجانس (C_f) حيث $||\vec{i}|| = ||\vec{j}|| = 2cm$

الجزء الأول:

- $g(x) = x 2 + \ln(x)$ بـ]0; +∞ على المعرفة على والدالة العددية المعرفة على $g(x) = x 2 + \ln(x)$
 - 1) أدرس تغيرات الدالة g.
- . $\alpha \in]1.55;1.56$ قبل حلا وحيدا α في المجال g(x) = 0 تقبل حلا وحيدا α في المجال α وحيدا عن المعادلة والمعادلة والمع
 - .]0;+ ∞ [استنتج إشارة g(x) في المجال (3

♦ الجزء الثاني:

- .]0;+ ∞ [المجال على المجال أعلى أدرس إشارة f(x)
- 2) أحسب نهايات الدالة f عند حدود مجموعة التعريف.
- . $f'(x) = \frac{g(x)}{x^2}$ ، $]0;+\infty[$ من المجال عدد حقيقي x من المجال عدد حقيقي (3
 - 4) استنتج اتجاه تغیر الدالهٔ f و شکل جدول تغیراتها .
 - $f'(\alpha) = -\frac{(\alpha-1)^2}{\alpha}$ بين أنَّ ، $f'(\alpha) = -\frac{(\alpha-1)^2}{\alpha}$ ، بين أنَّ ، بين أنَّ
- . (C_f) و (T) للمنحني (C_f) عند النقطة ذات الفاصلة (T) ثم أرسم (T) و (T)
- : التالية x التالية المعادلة ذات المجهول الحقيقي x عدد و إشارة حلول المعادلة ذات المجهول الحقيقي x التالية (x (x): x التالية (x)

المادة المادة عن البكالوريا جوان 2012 – أساتذة المادة