ثا/الشهيد مراح عبد القادر -وهران-

الثلاثاء:26نوفمبر 2013

الشعبة :رياضيات المدة:3ساعات

المستوى: سنة ثالثة ثانوى

اختبار الثلاثـــي الأول في مــادة الرياضيات

التمرين الأول: (6نقط)

.
$$x^4 + 4 = (x^2 + 2)^2 - 4x^2$$
 : $x^4 + 4 = (x^2 + 2)^2 - 4x^2$: $x^4 + 4 = (x^2 + 2)^2 - 4x^2$

بـ)استنتج أنه يمكن كتابة x^4+4 على شكل جداء كثيري حدود من الدرجة الثانية.

ثانيا: المكن n عدد طبيعي أكبر من أويساوي 2 . A و B عددان طبيعيان و d قاسمهما المشترك الأكبر.

$$B = n^2 + 2n + 2$$
 $A = n^2 - 2n + 2$

بين أن 4+4 ليس عددا أوليا. 1.

. 2 فهو قاسم لـ A بحیث یقسم n فهو قاسم لـ A

. 4n و B فهو يقسم A فاسم مشترك A و A

بنفرض أن n عدد فردي.

أ) بين أن A و B عددان فرديان .ثم استنتج أن d عدد فردي d

ب) بین أن d یقسم n . استنتج أن d یقسم d و أن d و d أولیان فیما بینهما.

الآن نفرض أن n زوجي.

. $n^2 - 2n + 2$ أ)بين أن 4 لايقسم

ب)بين أن dيكتب على شكل d=2 حيث p عدد طبيعي فردي.

d=2 بين أن p يقسم n . ثم استنتج أن

التمرين الثاني: (6نقط)

دالة معرفة على \mathbb{R} ونرمز بـ (δ) الى منحناها البياني،في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(O, ec{t}, ec{j})$. أنظر إلى الشكل 1 . بقراءة بيانيا

$$f'(0)$$
 و $f'(\ln 4)$ أحسب) أحسب

ب) استنتج معادلة المماس
$$\left(T_1\right)$$
 للمنحنى $\left(\delta\right)$ عند النقطة ذات الفاصلة 0 .

.
$$(D)$$
 عين معادلة للمستقيم

د) شکل جدول تغیرات الداله
$$f$$

$$y = \frac{m}{2}x + m$$
 هـ) ليكن (T_m) مستقيم معادلته

حيث m وسيط حقيقى.

بين أن كل المستقيمات $\left(T_{m}\right)$ تشمل نقطة وحيدة Aيطلب تعيين

احداثيتيها .

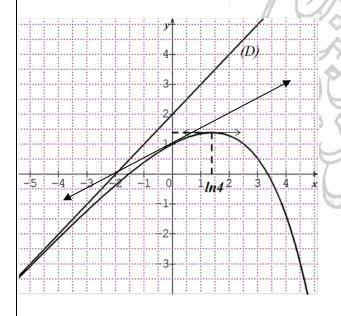
$$f\left(x\right) = \frac{m}{2}x + m$$
 حدد حلول المعادلة: m عدد حلول المعادلة:

$$h(x)=f(|x|)$$
 لتكن h الدالة المعرفة على \mathbb{R} كما يلي:

. ماذا يمكن القول عن النقطة
$$B\left(0;1
ight)$$
مع التعليل. $B\left(0;1
ight)$ مع التعليل.

ب) تحقق أن hدالة زوجية.

. المنحنى الممثل للدالة
$$h$$
 انطلاقا من المنحنى (δ) في نفس المعلم .



التمرين الثالث: (8نقط)

(الوحدة (5cm) (الوحدة $(0;\vec{i};\vec{j})$) ليتمرين المستوي منسوب الى معلم متعامد ومتجانس

الجزء الأول:

 $f_1(x) = xe^{-x^2}$ نعتبر الدالة f_1 المعرفة على $[0;+\infty[$ على المعرفة على

. f_1 المنحنى الممثل للدالة (C_1) و

- . f_1 محيث f_1' هي الدالة المشتقة الأولى للدالة f_1 شم استنتج تغيرات الدالة المشتقة الأولى الدالة . 1
 - . أحسب نهاية الدالة f_1 عند ∞ عند ∞ عند ∞ . ($u=x^2$ وضع $x=x^2$ عند $x=x^2$
 - f_1 شكل جدول تغيرات الدالة f_1
 - . (Δ) و (C_1) المستقيم ذو المعادلة y=x عين الوضعية النسبية لـ (Δ) و .4
 - \cdot $\left(\Delta
 ight)$ و $\left(C_{1}
 ight)$. أنشئ .5

الجزء الثاني:

 $f_3(x)=x^3e^{-x^2}$: كمايلي: $[0;+\infty[$ على الدالة المعرفة على

. f_3 المنحنى الممثل للدالة (C_3)

. $3-2x^2$ اشارة $f_3'(x)$ هي من اشارة عدد حقيقي موجب x اشارة f_3 هي من اشارة -3 .

 $\cdot (C_3)$ ادرس وضعیة $\cdot (C_1)$ بالنسبة .2

 $(+\infty$ عند عند f_3 و و f_3 نفس النهاية عند (C_3) د انشئ (C_3) . انشئ (C_3)

الجزء الثالث:

 $f_n(x) = x^n e^{-x^2}$:بالمعرفة على $[0;+\infty[$ بلكن f_n المعرفة على المعرف

. f_n المنحنى الممثل للدالة (C_n) و

. α_n نسميها $x=\sqrt{rac{n}{2}}$ عند عظمى عند $x=\sqrt{rac{n}{2}}$ نسميها عبين أن من أجل كل عدد طبيعي $x=\sqrt{rac{n}{2}}$ غير معدوم ،الدالة $x=\sqrt{rac{n}{2}}$

. $\sqrt{rac{n}{2}}$ نسمي النقطة S_n من المنحنى (C_n) ذات الفاصلة .2

. بين أن من أجل كل $n \geq 1$ المنحنيات $\binom{C_n}{n}$ تتقاطع في نقطتين هما مبدأ المعلم و نقطة أخرى يطلب تعيينها

. S_3 و S_2 ، S_1 مثل النقط

 $g\left(x
ight)=\exp\left[rac{x}{2}\left(-1+\ln\left(rac{x}{2}
ight)
ight)
ight]$ بـ: $\left[0;+\infty\right[$ بنكن g الدالة المعرفة على $\left[0;+\infty\right[$

أ)أدرس تغيرات الدالة g .

. $g(n) = \alpha_n$: $n \ge 1$ بين أن من أجل

. S_2 قارن ترتیب کل النقط S_n مع ترتیب النقطة

بالتوفيق والسداد