الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية الشلف

السنة الدراسية: 2015-2016

الشعبة: تسيير واقتصاد

مدة الانجاز: 3 سا و30 د

وزارة التربيت الوطنيت

ثانويت بلحاج قاسم نورالدين

البكالوريا التجريبي دورة ماي 2016

إختبار في مادة الرياضيات

🖘 على المترشح أن يختار أحد الموضوعين التاليين

الموضوع الاول

□ التمرين الأول: (04 نقاط)

إختيار من متعدد: إختر الاجابة الصحيحة من بين الاجابات المقترحة مع التبرير.

: هي f(x) = ln(2-3x) : المعرفة بـ (1

$$D_f = \left] \frac{2}{3}; +\infty \right[\quad (\mathbf{E} \quad D_f = \left] -\infty; \frac{3}{2} \right[\quad (\mathbf{E} \quad D_f = \left] -\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f = \left[-\infty; \frac{2}{3} \right] \quad (\mathbf{E} \quad D_f$$

: ييمة العدد $2 ln\left(\frac{\sqrt{2}}{2}\right) + ln + \frac{1}{2}ln$ تساوي (2

$$ln3 \leftarrow ln3 \leftarrow ln3 + ln2 \leftarrow ln3 + ln3 \leftarrow ln3 \leftarrow ln3 \leftarrow ln3 + ln3 \leftarrow ln3$$

: هي $g(x) = x - x^2 \ln x$: ب $]0;+\infty[$ المعرفة على المجال و المعرفة على المجال (3

$$g'(x) = 1 - 2x \ln x + x$$
 (ξ $g'(x) = 1 - 2x \ln x$ (ξ $g'(x) = 1 - 2x \ln x - x$ (ξ

H الدالة الأصلية للدالة h حيث $h(x) = \frac{\ln x}{x} + 1$ على المجال $h(x) = \frac{\ln x}{x} + 1$ هي الدالة h الدالة الأصلية للدالة h حيث $h(x) = \frac{\ln x}{x} + 1$ على المجال $h(x) = \frac{\ln x}{x} + 1$ المعرفة على المجال $h(x) = \frac{\ln x}{x} + 1$

$$H(x) = \frac{1}{2}(\ln x)^2 - x + 1$$
 (ε $H(x) = \frac{1}{2}(\ln x)^2 + x + 1$ (φ $H(x) = \frac{1}{2}(\ln x)^2 + x - 1$ ($\dot{\varphi}$

₪ التمرين الثاني: (04 نقاط)

 $u_{n+1} = \frac{1}{2}u_n + 1$ ، n ومن أجل كل عدد طبيعي $u_0 = 1$: المعرفة ب $u_0 = 1$ المعرفة ب $u_0 = 1$ المعرفة ب $u_0 = 1$

- u_3, u_2, u_1 أحسب (1
- بين أنَ المتتالية (u_n) ليست حسابية و ليست هندسية .
- $u_n < 2$: n عدد طبیعي (3 برهن بالتراجع أنه من أجل كل عدد عدد التراجع أ
 - $v_n = 2 u_n$: n نضع من أجل كل عدد طبيعي .II
- . بين أنَ المتتالية (v_n) هندسية يطلب تعيين أساسها وحدها الأول (1
- . $\lim_{n\to+\infty}u_n$ بدلالة u_n ثم استنتج أنه من أجل كل عدد طبيعي $u_n=2-\left(\frac{1}{2}\right)^n$ ، $u_n=2$ (2
 - (u_n) أدرس اتجاه تغير المتتالية (3
 - $\lim_{n\to +\infty} S_n$ أحسب بدلالة n المجموع : $S_n=u_0+u_1+\ldots+u_n$ غمَ أحسب (4

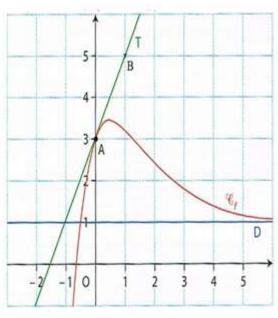
■ التمرين الثالث: (05 نقاط)

الجدول التالي يعطى عدد المنخرطين في احدى النوادي الرياضية من سنة 2008 حتى سنة 2013 .

السنة	2008	2009	2010	2011	2012	2013
رتبة السنة x_i	1	2	3	4	5	6
عدد المنخرطين y_i	70	90	115	140	170	220

- . مثل سحابة النقط $M_i(x_i; y_i)$ المرفقة بهذه السلسلة (1
- 2) عين إحداثيي النقط المتوسطة : G_1 من سنة 2018 الى سنة G_2 ، 2010 عين إحداثيي النقطة G_3 النقطة G_3 من سنة 2011 الى سنة 2013 و النقطة G_3 النقطة $G_$
 - 3) باستعمال مستقيم مايير:
 - y=28.3x+35.1 و G_2 و G_1 المار بالنقطتين (d) المار عادلة المستقيم
 - y=29x+32.7: بين أنَ معادلة مستقيم الانحدار (Δ) بالمربعات الدنيا هي (4
 - نضع: z = ln y أنقل واكمل الجدول التالى:

x_i	1	2	3	4	5	6
$z_i = \ln y_i$						


- . z = ax + b عين معادلة مستقيم الانحدار ((Δ')) بالمربعات الدنيا من الشكل (أ
 - $y = ce^{ax}$: بعيث يكون العدد الحقيقى بعيث يكون
 - 6) عين عدد المنخرطين في النادي سنة 2017 . بالتعديلات الثلاث .

■ التمرين الرابع: (70نقاط)

- I في المستوي المنسوب الى المعلم المتعامد والمتجانس (O,\vec{i},\vec{j}) نعتبر المنحني (C_f) الممثل للدالة B(1;5) على \mathbb{R} . وليكن (T) المماس للمنحني (C_f) في النقطة (C_f) والمار من النقطة (C_f)
 - f'(0), f(0) : عين بيانيا (1
 - (T) عين معادلة ديكارتية للمماس (2).
 - نفرض أَنَ $f(x)=1+\frac{ax+b}{e^x}$ عددان حقيقيان. (3
 - a,b الحسب عبارة f'(x) بدلالة كلا
 - ب) باستعمال المعطيات السابقة عين كلا من a,b

$$f(x) = 1 + \frac{4x + 2}{e^x}$$
 : نعطي .II

- 1) أحسب النهايات عند حدود مجموعة التعريف.
-) أدرس اتجاه تغير الدالة f وشكل جدول تغير اتها (2
 - ب: g المعرفة على g .III نعتبر الدالة العددية $g(x) = (4x+2)e^{-x}$

- عين العددين الحقيقيين $G(x)=(\alpha x+\beta)e^{-x}$ المعرفة على \mathbb{R} المعرفة أصلية الدالة $G(x)=(\alpha x+\beta)e^{-x}$ على \mathbb{R} .
 - و المستقيمين y=1 المستقيمين y=1 المستقيمين (C_f) المستقيمين المحدد بالمنحني (C_f) المستقيمين x=2,x=0

الموضوع الثاني

□ التمرين الأول (03 نقاط)

و في كل حالة من الحالات التالية توجد ثلاث اقتراحات من بينها واحد فقط صحيح ، حدّد الاقتراح الصحيح في كل حالة مع التبرير

: هي المجموعة حلول المعادلة $e^x + e^{-x} - 2 = 0$ في المجموعة (1

$$S = \{0\}$$
 (c $S = \{-1, 2\}$ (4)

: هي المجموعة حلول المتراجحة $e^{-2016x} + 1437 < 0$ هي $e^{-2016x} + 1437 < 0$

$$S=\left]-\infty,0
ight]$$
 (E $S=\phi$ (φ

لتكن h دالة معرفة على المجموعة \mathbb{R} ب \mathbb{R} بالدالة الأصلية H للدالة h على \mathbb{R} و التي تنعدم (3 h

: من أجل القيمة x=0 معرفة كما يلي

$$H\left(x\right)=\ln\left(2e^{x}+2\right)\text{ (c} \qquad H\left(x\right)=\ln\!\left(\frac{e^{x}-1}{2}\right)\text{ (c)} \qquad H\left(x\right)=\ln\!\left(\frac{e^{x}+1}{2}\right)\text{ (c)}$$

🖵 التمرين الثاني: (05 نقاط)

🖘 الجدول التالي يعطى توزيع 100 منخرط في احدى النوادي السياحية .

	رجال	تساء
يمارس رياضة	48	12
لا يمارس رياضة	16	24

لتكن H حادثة " السائح المختار رجل " و F حادثة " السائح المختار امرأة " و S حادثة " المنخرط يمارس رياضة ". نختار عشوائيا منخرطا .

أ) السائح المختار رجل .
 ب) السائح المختار امرأة تمارس رياضة .

ج) سائح لا يمارس أية رياضة .

د) السائح المختار يمارس رياضة علما أنه رجل.

□ التمرين الثالث: (04 نقاط)

الجزء الاول:

لتكن المتتالية العددية $u_n = 100 \times \left(1.08\right)^{n-1}$ غير معدوم غير معدوم . في المعرفة بالعبارة $u_n = 100 \times \left(1.08\right)^{n-1}$ و $v_1 = 1.08$ و المتتالية العددية $v_n = 1.08$ المعرفة بالعبارة بالعبارة والمتتالية العددية $v_n = 1.08$

- u_1 بين أنَ المتتالية $(u_n)_{n\in\mathbb{N}^*}$ متتالية هندسية يطلب تعيين أساسها u_n وحدها الأول (1
 - . معدوم غير معدوم $w_n = v_n + 100$ نضع (2
 - أ) بين أنَ المتتالية $(w_n)_{n=\mathbb{N}^*}$ متتالية هندسية يطلب تعيين أساسها وحدها الاول .
- $n \in \mathbb{N}^*$ ب من أجل $v_n = 101 \times \left(1.08\right)^{n-1} 100$ ب أحسب عبارة n بدلالة n ثم استنتج أن

الصفحة ~ 3 ~ من 4

الجزء الثانى: اقترح خبير على صاحب مصنع نوعين من آلات الانتاج .

- النوع الأول تنتج الآلة u_n طن من منتوج معين إذا اشتغلت n ساعة u_n
- النوع الثاني تنتج الآلة v_n طن من نفس المنتوج إذا اشتغلت n ساعة v_n علما أنّ صاحب المصنع يريد تشغيل إحدى الآلتين 100 ساعة في الاسبوع. حدد مع التبرير ، أي نوع من الآلات سيكون أكثر انتاجية خلال أسبوع؟

□ التمرين الرابع: (08 نقاط)

 $f(x) = 2 - \frac{1}{12} - \frac{\ln(x)}{12}$: ينكن $f(x) = 2 - \frac{1}{12} - \frac{\ln(x)}{12}$ الدالة العددية المعرفة على المجال $f(x) = 2 - \frac{1}{12} - \frac{\ln(x)}{12}$

. $\left(\mathbf{O}, \vec{\mathbf{i}}, \vec{\mathbf{j}}\right)$ المنحني الممثل للدالة f في المستوي المنسوب الى المعلم المتعامد و المتجانس

ا أ احسب $\int \lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ قم فسر النتيجتين هندسيا (أ

ج) استنتج اتجاه تغیر الدالهٔ f و شکل جدول تغیر اتها .

أ) حل في المجال (Δ) المعادلة f(x)=2 ثم استنتج نقط تقاطع أ (C_f) مع المستقيم أ (Δ) ذي المعادلة (1 (Δ)

 (Δ) بالنسبة الى الوضعية النسبية للمنحني المنسبة الى (Δ)

 (C_f) و (Δ) ج)أرسم

 $H(x) = \ln(x) + \frac{1}{2}(\ln(x))^2$: ب $= [0; +\infty[$ لتكن الدالة العددية H المعرفة على المجال $H(x) = \ln(x)$

.] $0;+\infty[$ على المجال $h(x)=\frac{1}{x}+\frac{\ln(x)}{x}$ على المجال] $0;+\infty[$ على المجال)

ب) أحسب بـ cm^2 المساحة A للحيز المستوي المحدد بالمنحني (C_f) و المستقيمات التي معادلاتها

$$x = e$$
 $y = \frac{1}{e}, y = 2$

8مع تمنياتي لكم ⊖بالنجاح في البكالوريا 2016 ۞ أستاذ المادة ۞ ۞