السنة الدراسية: 1437/1436 هـ// 2015/2015 م

المستوى: الثالثة ثانوي علوم تجريبية.

الفرض الأول

الخميس 15 محرّم 1437 // 29 أكتوبر 2015

مادة: الرياضيات المدة: ساعتان

التمرين الأول (11 نقطة)

 $g(x) = 2x^3 - 4x^2 + 7x - 4$ كما يلى: $g(x) = 2x^3 - 4x^2 + 7x - 4$ كما يلى: $g(x) = 2x^3 - 4x^2 + 7x - 4$

 $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to -\infty} g(x)$ احسب (أ)

ب) ادرس اتجاه تغیّر الدالة g على $\mathbb R$ ثم شكّل جدول تغیّراتها.

 $0.7 < \alpha < 0.8$ غين أنّ المعادلة g(x) = 0 تقبل حلا وحيدا α حيث (2

ب) استنتج حسب قيم العدد الحقيقي x إشارة g(x)

 $f(x) = \frac{x^3 - 2x + 1}{2x^2 - 2x + 1}$:كما يلي: f المعرّفة على المعرّفة على المعرّفة على (II

 $\cdot \left(O; ec{i}, ec{j}
ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f
ight)$

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (1

 $f(x) = \frac{1}{2}(x+1) + \frac{1-3x}{2(2x^2-2x+1)}$: \mathbb{R} من x من أجل كل x من أجل كل (2)

ب) استنتج أنّ المنحنى (C_f) يقبل مستقيما مقاربا مائلا (Δ) يُطلب تعيين معادلة له.

 $\left(\Delta
ight)$ و $\left(C_{f}
ight)$ ادرس الوضع النسبي للمنحنى

. f مشتقة الدالة $f'(x) = \frac{x \cdot g(x)}{(2x^2 - 2x + 1)^2}$ هشتقة الدالة $f'(x) = \frac{x \cdot g(x)}{(2x^2 - 2x + 1)^2}$

 $(f(\alpha) \approx -0.1)$ باستنتج إشارة f'(x) حسب قيم x ثم شكّل جدول تغيّرات الدالة

f(x)=0 المعادلة f(1) المعادلة (4

 (C_f) و المنحنى (Δ) و المنحنى (5)

 $h(x) = \frac{x^3 - 4x^2 + 2x - 1}{2x^2 - 2x + 1}$ كما يلي: \mathbb{R} كما يلي (6

. و (C_h) تمثيلها البياني في المعلم السابق

 $h(x) = f(x) - 2 : \mathbb{R}$ من أجل كل x من أجل كل أي تحقق أنّه من أجل كل

 (C_h) بتحویل نقطی بسیط یطلب تعیینه، ثم أنشئ (C_f) بتحویل نقطی بسیط یطلب تعیینه، ثم أنشئ

التمرين الثاني (09 نقاط):

اعتمادا على الشكل: (C_f) التمثيل البياني للدالة f في معلم متعامد ومتجانس (C_f) اعتمادا على الشكل

$$\lim_{x \to -1} f(x) \cdot \lim_{x \to -\infty} f(x)$$

$$\lim_{x \to 1} f(x) \lim_{x \to 1} f(x)$$

$$\lim_{x \to +\infty} f(x)$$

2. أ / عين معادلة المستقيم المقارب المائل
$$(C_f)$$
 .

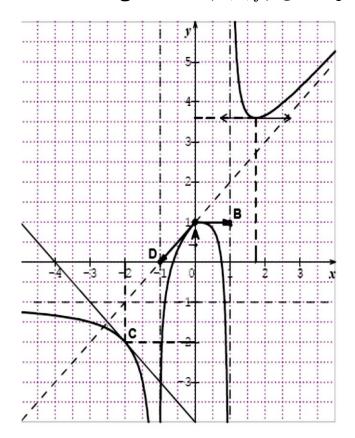
ب / استنتج النهاية:

$$\lim_{x \to +\infty} [f(x) - x - 1]$$

$$f_{<}'(0)$$
 ، $f(0)$. (0) عين القيم التالية: $f_{<}'(0)$. (0) . $f_{>}'(0)$

ب / هل الدالة f مستمرة وقابلة للاشتقاق عند f علل.

$$D_f$$
 على D_f على .


$$f$$
د /شكل جدول تغيرات الدالة

[-1;1] : المجال محل بيانيا في المجال

أ / المعادلة: f(x) = 0 واعط حصر الحلول المعادلة.

 $f'(x) \ge 1$ بالمتراجحة: 1

f(x) = x + m : عدد و إشارة حلول المعادلة m عدد و إشارة حلول المعادلة

