فرض الفصل الثاني في مادة الرياضيات

التمرين الأول:

 $\left(o; \vec{i}; \vec{j}
ight)$ المستوي منسوب إلى معلم متعامد ومتجانس

$$g(x)=2x-1-\ln x$$
: نعتبر الدالة g المعرّفة على $g(x)=0$; $+\infty$ كما يلي .I

$$\lim_{x \to +\infty} g(x) = +\infty$$
 وبيّن أن $\lim_{x \to 0} g(x)$ -1

$$g(x)>0$$
: استنتج انه من اجل كل x من $]0;+\infty[$ لدينا $]0;+\infty[$

$$0.2 < lpha < 0.3$$
 عقق $\alpha < 0.3$ والآخر $\alpha < 0.3$ تقبل حليّن احدها $\alpha = 1$ والآخر $\alpha < 0.3$ عقق $\alpha < 0.3$

$$f(x)=x^2-1-x\ln x$$
: لتكن الدالة f المعرّفة على $0;+\infty$ كما يلى: II

 $\lim_{x \to +\infty} f(x) \in \lim_{x \to 0} f(x)$ (1)

$$f'(x) = g(x):]0; +\infty[$$
من x من اجل کُل x من اجل کُل (2 بیّن انه من اجل کُل x من الدالة x أنشئ جدول تغیراتها x باستنتج اتجاه تغیر الدالة x

. يتن أن المنحنى (C_f) للدالة f يقبل نقطة انعطاف يطلب تحديد إحداثياها.

. (C_f) احسب f(1) ، ثم أنشئ المنحنى (4

التمرين الثاني:

 $u_{n+1}=rac{2}{3}u_n+1$ المعرفة على $u_0=6$ بحدها الأول $u_0=6$ والعلاقة التراجعية (u_n) المعرفة على بعتبر

$$(\Delta): y = x$$
 وَ $(D): y = \frac{2}{3}x + 1$ أرسم المستقيمين $(D; \vec{i}; \vec{j})$ متعامد ومتجانس ومتجانس $(D; \vec{i}; \vec{j})$

ب- مثل على محور الفواصل الحدود u_1 ، u_2 ، u_3 ، u_2 ، u_3 ، u_4 ، u_6 وتقاربها. u_6 مثل على محور الفواصل الحدود u_1 ، u_2 ، u_3 ، u_4 ، u_6 ، u_6 وتقاربها. u_8 - برهن بالتراجع أنه من أجل كل عدد طبيعي u_8 لدينا: u_8 - برهن بالتراجع أنه من أجل كل عدد طبيعي u_8 لدينا: u_8 - u_8 .

 (u_n) د- ادرس اتجاه تغیر المتتالیة (u_n) . استنتج تقارب المتتالیة د- ادرس

 $v_n=2^n.3^{1-n}$ عدد طبیعی n المتتالیة (v_n) حیث (v_n) عدد طبیعی (v_n)

أ- بين أن المتتالية (v_n) هندسية يطلب تعيين أساسها وحدها الأول. $\lim u_n = v_n + 3$. استنتج $u_n = v_n + 3$.

. $w_n = \ln v_n$ یلي: \mathbb{N} کیا یلی: معرفة علی متتالیة م عرفة علی) متتالیة م

أ- بين أن (\mathcal{W}_n) متتالية حسابية يطلب تعيين أساسها وحدها الأول.

$$S_n = 2\left(rac{3}{2}
ight)^{n+1} + n - 1$$
 بين أن $S_n = rac{u_0}{v_0} + rac{u_1}{v_1} + \dots + rac{u_n}{v_n}$ بين أن بين أن

التمرين الثالث:

صندوق يحوي 6 كرات، 3 بيضاء 2 حمراء 1 سوداء. (الكرات متاثلة)

نسحب عشوائيا مع عدم الإرجاع ثلاث كرات من الصندوق.

1/ احسب احتمال الحصول على ثلاث كرات مختلفة اللون.

X نعتبر المتغير العشوائي X الذي يرفق بكل نتيجة سحب عدد الكرات الحمراء المسحوبة.

E(X) عيّن قانون احتمال X، ثم احسب -

3/ نعتبر الآن أن السحب تم دفعة واحدة.

- احسب احتمال الحصول على كرة حمراء على الأقل.