السنة الدراسية: 2018 - 2019

وزارة التربية الوطنية

مديرية التربية لولاية قالمة

المستوى: 3علوم تجريبية

ثانوية : براوي ذوادي

المدة: 33 سا

اختبار الفصل الثاني في مادة : الرياضيات

التمرين الاول: (04 نقاط)

 $\overline{$ کیس یحتوی عُلی کرتین بیضاء مرقمة بـ : 2 $\overline{}$ و ثلاث کرات حمراء مرقمة بـ : 3 $\overline{}$ 3 وأربع کرات سوداء مرقمة بـ : 2 $\overline{}$ 3 $\overline{}$ 3 وأربع کرات سوداء مرقمة بـ : 2 $\overline{}$ 3 $\overline{}$ 3 $\overline{}$ 3 وأربع کرات سوداء

- 1) نسحب في أن واحد كرتين من الكيس.
- a) احسب احتمال وقوع الحوادث التالية:
 - ظهور كرتين من لونين مختلفين A
- B: ظهور رقمین فردیین علی الأكثر
- ظهور عددین مجموع رقمیهما عدد أولي : C
- . نعتبر المتغير العشوائي X الذي يرفق بكل عملية سحب مجموع الرقمين الظاهرين (b
- عين قانون الاحتمال لهذا المتغير العشوائي و الامل الرياضياتي ثم الانحراف المعياري.
- 2) نعتبر الكيس الأول و كيس آخر يحوي كرتين بيضاوين مرقمة ب1, 1, 1 وكرتين حمراوين مرقمة ب2, 2, 2 وكرتين سوداوين مرقمة ب

نرمي حجر نرد مرقم من 1 الى 6 مرة واحدة فعند ظهور عدد فردي نسحب كرة من الكيس الأول و عند ظهور عدد زوجي نسحب كرة من الكيس الثاني .

 $p(B') = \frac{5}{18}$: هو این أن احتمال ظهور کرة بیضاء هو - بین أن

- علما ان الكرة المسحوبة بيضاء ، ما هو احتمال أن تكون من الكيس الثاني ؟

التمرين الثاني: (04 نقاط)

 $u_{n+1} = \frac{5u_n - 4}{u_n + 1}$ ، غير معدوم غير عدد طبيعي $u_n = 3$ و من أجل كل عدد طبيعي المعرفة ب $u_n = 3$

- $u_n > 2 : n$ بين أنه من أجل كل عدد طبيعي (۱
- . بين ان المتتالية (u_n) متتاقصة تماما ثم استنتج أنها متقاربة (u_n)
- $v_n = rac{1}{u_n 2}$: n عدد طبیعي عدد (v_n) المعرفة كما يلي عنبر (v_n) عنبر المتثالية (v_n) المعرفة كما يلي
 - . الأول عين حدها الأول $\frac{1}{3}$ عين حدها الأول (ا
 - $u_n = \frac{2n+9}{n+3}$ ب ب أب يتم استنتج أن v_n عبارة الحد العام v_n
 - $\lim_{n\to+\infty}u_n$ جي (ج
- $S_n' = u_0v_0 + u_1v_1 + \dots + u_{n-1}v_{n-1}$ و $S_n = v_0 + v_1 + \dots + v_{n-1}$: احسب بدلالة n المجموعين (3

التمرين الثالث: (05 نقاط)

- $(z-4)(z^2-2z+4)=0$: حل في مجموعة الاعداد المركبة \Im المعادلة ذات المجهول المركب الاتية
 - المستوي المركب منسوب إلى المعلم المتعامد والمتجانس (\overrightarrow{v} ; \overrightarrow{v})، نعتبر النقط B، وC التي لاحقاتها على . $z_C=1-i\sqrt{3}$ و $z_B=1+i\sqrt{3}$ ، $z_A=4$

 - . ABC على الشكل الاسي ثم استنتج طبيعة المثلث على الشكل 1 أ. أكتب العدد المركب $\frac{z_C-z_A}{z_B-z_A}$
 - ب. عين قيم العدد الطبيعي n بحيث يكون العدد $\left(\frac{z_C-z_A}{z_D-z_A}\right)^n$ تخيليا صرفا .
 - : مجموعة النقط M من المستوي المركب ذات اللاحقة Z التي تحقق مايلي (3) حدد طبيعة (E_2) و (E_2) $(E_1): |z-1-i\sqrt{3}|=9$
 - $(E_2): |iz + \sqrt{3} i| = |z 1 + i\sqrt{3}|$ \therefore
 - . (E_2) مركز الدائرة المحيطة بالمثلث ABC تنتمى الى G بين أن G

- و التمرين الرابع: $g(x)=x^2-2+\ln x$ التكن الدالة العددية g المعرفة على $g(x)=x^2-2+\ln x$ التكن الدالة العددية . $g(x)=x^2-2+\ln x$ 1. أدرس تغيرات الدالة q
- . g(x) قبل من المعادلة g(x)=0 تقبل حلا وحيدا lpha من المجال a من المعادلة و تقبل عبد السارة a
- . $f(x) = \frac{x^2 + 1 \ln x}{x}$: بمايلي $f(x) = \frac{x^2 + 1 \ln x}{x}$: بمايلي الدالة العددية f(x)II.. $(o; \vec{\imath}; \vec{\jmath})$ التمثيل البياني لدالة f في المستوي المنسوب الى المعلم المتعامد و المتجانس (C_f) .
 - اً. أَا حَسُبُ f(x) وفسر النتيجة بيانيا . $\lim_{x \to 0} f(x)$
 - $\cdot \lim_{x \to +\infty} f(x) \qquad \qquad (\cdots)$
 - . $f'(x) = \frac{g(x)}{x^2}$:]0; + ∞ [: من المجال عدد حقيقي x من المجال عدد عقيق أنه من اجل كل عدد عقيقي x
 - ب. استنتج اتجاه تغیر الدالة f ثم شکل جدول تغیر اتها
 - y=x مستقيم مقارب مائل للمنحنى (Δ) دو المعادلة y=x مستقيم مقارب مائل للمنحنى (Δ
 - (C_f) و المنحنى النسبي المستقيم (Δ) و المنحنى
 - . $f(\alpha)$ عصر المعدد ، $f(\alpha)=2\alpha-rac{1}{\alpha}$ بين أن 4.
 - 5. أ. بين أن (C_f) يقبل مماسا (T) يوازي (Δ) عند نقطة يطلب تعيين إحداثياتها . (T) ب أكتب معادلة المماس
 - (C_f) و و (Δ) .
 - $h(x) = \frac{x^2 + 1 \ln|x|}{|x|}$: يعتبر الدالة العددية h المعرفة على \mathbb{R}^* بمايلي الدالة العددية III.
 - . انشئ (C_h) التمثيل البياني لدالة h في نفس المعلم السابق مع الشرح \bullet بالتوفي ق