تمارين في الحساب مع الحل لشعبتي الرّياضي و التّقني رياضي للتّحضير لبكالوريا 2019

التمرين الأوّل:

- من العدد الطبيعي n ، باقي القسمة الإقليدية لكل من العددين 3^n و 4^n على 7 . 1
- . 7 يكون العدد : $2 \times 2012^{6n+4} + 3 \times 1432^{3n+2}$ قابلا للقسمة على (2
 - . $u_{\scriptscriptstyle n}=2\times 3^{\scriptscriptstyle n}+3\times 4^{\scriptscriptstyle n}$: عتبر المنتالية العددية $(u_{\scriptscriptstyle n})$ المعرفة على $\mathbb N$ بحدها العام (3
 - . $S_{n}=u_{0}+u_{1}+....+u_{n}:$ أُ أُحسب بدلالة n المجموع
 - ب) ماهي قيم الأعداد الطبيعية n التي يكون من أجلها المجموع S_n قابلا للقسمة على 7 ? .

التمرين الثاني:

- . (E): 3x-8y=5: المعادلة (\mathbb{Z}^2 على في
- . n=8y+7 و x ، n=3x+2 : عيحة حيث x ، n (2
 - . (E) على للمعادلة (x;y) على الثنائية \checkmark
 - . $n\equiv 23 igl[24igr]$: يَيِّنَ أَنَّ : S : $n\equiv 2 igl[3igr]$: نعتبر الجملة : \sqrt{n}
 - : عدد طبيعي m (3
 - . 8 عين باقي قسمة 2^{2m} على 3 ، وَ باقي قسمة 7^{2m} على 7^{2m}
 - . (S) عَقِق أَنَّ العدد 1439 حل للجملة \checkmark
 - √ ما هو باقي قسمة : 1439²⁰¹⁸ على 24 ؟.

التمرين الثالث:

أجب بصحيح أو خطأ مع التّبرير:

- . 3 من أجل كل عدد طبيعي n ، العدد $(2^{2n}-1)$ يقبل القسمة على (1
- . $x\equiv 0$ [3] : فإنّ $x^2+x\equiv 0$ ها المعادلة $x^2+x\equiv 0$ إذا كان العدد الصّحيح x حلاّ للمعادلة (2
 - . \mathbb{Z}^2 في عبل حلولا في 25x 30y = 47) المعادلة (3
- PPCM(a,b) PGCD(a,b) = 1 وَ a < b: وَ a < b توجد ثنائية وحيدة a < b من الأعداد الطبيعية حيث (4
 - . $PGCD(14n+21;21n+14)=7\,:\,n$ مهما یکن العدد الطبیعي (5
 - : $N=\overline{bca}$ ، $M=\overline{abc}$: العددان M و N مكتوبان في النّظام العشري على الشّكل M العددان M و M مكتوبان في النّظام العشري على M إذا كان M يقبل القسمة على M فإنّ M فإنّ M إذا كان M يقبل القسمة على M
 - . $\overline{21312}^{(a)}$: يوجد نظام تعداد أساسه a بحيث العدد 2018 يكتب (7

التمرين الرابع:

من أجل كل عدد طبيعي غير معدوم n نفرض الأعداد :

.
$$c_{_{n}}=2\times 10^{^{n}}+1$$
 , $b_{_{n}}=2\times 10^{^{n}}-1$, $a_{_{n}}=4\times 10^{^{n}}-1$

.
$$3$$
 و 2 ، 1 يساوي n ، a_n من أجل n يساوي b_n ، a_n ، a_n (1

. 3 يقبلان القسمة على a_n يقبلان القسمة على \checkmark

. بيّن أنّ العدد $b_{\scriptscriptstyle 3}$ بيّن أنّ العد

. $b_{_{n}} imes c_{_{n}} = a_{_{2n}} : n$ مين أُبّه من أُجِل كل عدد طبيعي غير معدوم

. a_6 إستنتج تحليلا إلى عوامل أوّلية للعدد \checkmark

. مُمّ إستنتج أنّ م c_n و مُ أوّليان فيما بينهما . $PGCD(b_n;c_n)=PGCD(c_n;2):$ ه) بيّن أنّ الله عنهما .

. $b_{\scriptscriptstyle 3}x+c_{\scriptscriptstyle 3}y=1.....({\color{black}1}):$ نعتبر في ${\color{black}\mathbb{Z}}^2$ المعادلة (2

أ) برّر أنّ المعادلة (1) تقبل على الأقل حلا".

. (1) المبق خوارزمية إقليدس على $b_{_{\! 3}}$ و و يجاد حلا خاصا للمعادلة (1 با طبق خوارزمية إقليدس

. $({f 1})$ جي حل في ${\Bbb Z}^2$ المعادلة

حل التمرين الأوّل:

: 7 على 3^n بواقي القسمة الإقليدية لكل من 3^n و

 $. \ 3^{6} \equiv 1 \big[7 \big] \ \text{\i} \ 3^{5} \equiv 5 \big[7 \big] \ \text{\i} \ 3^{4} \equiv 4 \big[7 \big] \ \text{\i} \ 3^{3} \equiv 6 \big[7 \big] \ \text{\i} \ 3^{2} \equiv 2 \big[7 \big] \ \text{\i} \ 3^{1} \equiv 3 \big[7 \big] \ \text{\i} \ 3^{0} \equiv 1 \big[7 \big] \ \bullet$

قيم	6k	6k + 1	6k + 2	6k + 3	6k + 4	6k + 5
7 بواقي قسمة 3^n على	1	3	2	6	4	5

. $4^3 \equiv 1 \big[7 \big]$, $4^2 \equiv 2 \big[7 \big]$, $4^1 \equiv 4 \big[7 \big]$, $4^0 \equiv 1 \big[7 \big]$.

n قي	3k	3k + 1	3k+2
7 بواقي قسمة 3^n على	1	4	2

n يقبل القسمة على 7 من أجل كل عدد طبيعي $2 \times 2012^{6n+4} + 3 \times 1432^{3n+2}$: أبرهان أن $(2 \times 2012^{6n+4} + 3 \times 1432^{3n+2})$

.
$$2012^{6n+4}\equiv 4igl[7igr]$$
 : ومنه $2012^{6n+4}\equiv 3^{6n+4}igl[7igr]$: ومنه $2012\equiv 3igl[7igr]$

. $1432^{3n+2}\equiv 2igl[7igr]:$ ومنه $1432^{3n+2}\equiv 4^{3n+2}igl[7igr]:$ أي $1432\equiv 4igl[7igr]:$ ومنه $2\times 2012^{6n+4}+3\times 1432^{3n+2}\equiv 8+6igl[7igr]:$ ومنه $2\times 2012^{6n+4}+3\times 1432^{3n+2}\equiv 8+6igl[7igr]:$ وهو المطلوب $2\times 2012^{6n+4}+3\times 1432^{3n+2}\equiv 0igl[7igr]:$ وهو المطلوب .

 $S_n = u_0 + u_1 + \dots + u_n$ خساب بدلالة n المجموع (أ

4 نلاحظ أن المتتالية (u_n) هي مجموع متتاليتين هندسيتين إحداهما أساسها 3 و حدها الأول (u_n) والثانية أساسها

$$S_n = \left[3^{n+1} - 1\right] + \left[4^{n+1} - 1\right]:$$
 و حدها الأول $S_n = 2\left[\frac{1 - 3^{n+1}}{1 - 3}\right] + 3\left[\frac{1 - 4^{n+1}}{1 - 4}\right]:$ و حدها الأول $S_n = \left[3^{n+1} - 1\right] + \left[4^{n+1} - 1\right]$

. $S_{_{n}}=3^{^{n+1}}+4^{^{n+1}}-2$: أي أنّ

: 7 جتى يكون S_n قابلا للقسمة على جب بيكون الم

. $3^{n+1}+4^{n+1}\equiv 2{\left\lceil 7 \right\rceil}:$ axilo $S_n\equiv 0{\left\lceil 7 \right\rceil}$

قيم n	6k	6k+1	6k + 2	6k + 3	6k + 4	6k + 5
7 باقي قسمة 3^n على	1	3	2	6	4	5
7 باقي قسمة 4^n على	1	4	2	1	4	2

. n+1=6k: اللاحظ أن n=6k: ، n=6k: ، n=6k: ، n=6k: ، n=6k: ، n=6k: ، n=6k: الله خط أن n=6k: ، n=6k: ، n=6k: ، n=6k: . n=6k: أى لما : n=6k:

. $k' \in \mathbb{N}$: حيث n = 6k' + 5 ، أي k' = k - 1 .

. $k'\in\mathbb{N}$: حيث ، n=6k'+5 ومنه حتى يكون S_n قابلا للقسمة على S_n ، يجب أن يكون

حل التمرين الثاني :

. (E) المعادلة : 3x - 8y = 5 الثّنائية (-1;-1) هي حل ظاهر للمعادلة (1

: بخد
$$(1)-(2)$$
 بطرح $3x-8y=5....(1)$ بطرح $(1)-(2)$ بطرح $(1)-(2)$ بخد نبحث عن كل الحلول : لدينا : $(1)-(2)=5....(2)$

، 3 مع 3 أي 3(x+1)=8(y+1): أي 3(x+1)=8(y+1): ، العدد 8 يقسم 3(x+1)=8(y+1):

x=8k-1: إذن حسب مبرهنة غوص 8 يقسم (x+1) أي x+1=8k: ومنه

y=3k-1:نعوّض قيمة x في 3k=y+1 ومنه 3(8k)=8(y+1) أي 3(x+1)=8(y+1) ومنه

. $k \in \mathbb{Z}$: حيث (x;y) = (8k-1;3k-1) هي: (E) عيث

. 3x - 8y = 5 : وَ n = 8y + 7 وَ n = 3x + 2 = 8y + 7 ومنه n = 3x + 2 ومنه (2)

. (E) الثّنائية (x;y) هي حل للمعادلة

$$lpha+2=8eta+7$$
ب) لدينا الجملة: $n=3lpha+2:$ ن المينا الجملة: $n=3lpha+2:$ ن إذن $n=3lpha+2:$

lpha=8k-1 أي lpha=8 ، إذن الثّنائية lpha(lpha;eta) هي حل للمعادلة lpha=8k-1 ، ومنه lpha=8k-1 ولدينا

، $n \equiv -1$ $\left[24\right]$: أي n = 24k - 1 أي n = 3(8k - 1) + 2 بالتعويض نجد n = 3(8k - 1) + 2

[6]

6

6

ومنه : $n \equiv 23[24]$ ، وهو المطلوب .

$$(3)$$
 أَ (3) تعيين باقي القسمة $(2)^{2m}$ على (3)

باقي قسمة
$$7^{2m}$$
 على 8:

لدينا
$$4^m=(2^2)^m=4^m$$
 ، ونعلم \checkmark $4^m\equiv 1ig[3ig]\colon \dot{0}$. أنّ $4\equiv 1ig[3]$

.
$$2^{2m}\equiv 1igl[3igr]$$
 : ومنه

.
$$7^{2m} \equiv 1[8]$$
 : ومنه $7^2 \equiv 1[8]$ ومنه $7^2 \equiv 1[8]$ ومنه $7^2 \equiv 1[8]$ ومنه $7^2 \equiv 1[8]$

.
$$(S)$$
 على كلّ من 3 وَ 8 نجد : $\begin{bmatrix} 1439 \equiv 2 \begin{bmatrix} 3 \\ 1439 \equiv 7 \begin{bmatrix} 8 \end{bmatrix} \end{bmatrix}$ ومنه $\begin{bmatrix} 1439 \equiv 439 \end{bmatrix}$ ومنه $\begin{bmatrix} 1439 \equiv 439 \end{bmatrix}$

: ينا:
$$\begin{cases} 1439^{2018} \equiv 2^{2018} \begin{bmatrix} 3 \\ 1439^{2018} \equiv 7^{2018} \begin{bmatrix} 8 \end{bmatrix} \end{cases}$$
 إذن :
$$\begin{cases} 1439 \equiv 2 \begin{bmatrix} 3 \\ 1439 \equiv 7 \end{bmatrix} \end{cases}$$
 و من السؤال (أ) سيكون لدينا :

$$egin{aligned} \cdot egin{cases} 1439^{2018} - 1 &\equiv 0 igl[3 igr] \ 1439^{2018} - 1 &\equiv 0 igl[8 igr] \end{cases} :$$
وَ $2^{2018} = 1 igl[8 igr] = 1 igl[3 igr]$ ومنه: $2^{2018} \equiv 1 igl[3 igr] = 1 igl[3 igr$

و بما أنَّ 3 و 8 أوَّليان فيما بينهما إذن : 0[24]: 0[24]: 0 ومنه : 0[24]: 0[24]

إذن باقي قسمة 1439²⁰¹⁸ على 24 هو 1 .

حل التّمرين الّثّالث:

$$4^n-1\equiv 0igl[3igr]$$
: $4^n\equiv 1igl[3igr]$ (1 $4^n\equiv 1igl[3igr]$) ونعلم أنّ (1 $4^n\equiv 1igl[3igr]$ ، ونعلم أنّ (1 $4^n\equiv 1igl[3igr]$) ومنه (1 $2^{2n}-1\equiv 0igr[3igr]$) ومنه (1 $2^{2n}-1\equiv 0igr[3igr]$

2) الإجابة خاطئة ، لأنّ :

: ومنه $x^2 + x \equiv 0$ ومنه $x^2 + x \equiv 0$

$$x \equiv 0$$

 $x \equiv 5[6]$ و كمثال مضاد: ممكن أن يكون

. 3 أي أنّ x ليس مضاعفا لx=6k+5

. 47 لكن 5 لا يقسم 17 (25;30) كن 5 لا يقسم 47 (35)

: "ومنه a'b'=2 ومنه a'b'-1=1 ، ومنه a'b'=1 ، ومنه a'b'=1 ، ومنه a'b'=1. d = 1 : گُنّ : (a;b) = (1;2) ، ومنه : (a';b') = (1;2) ، لأنّ a < bPGCD(14n+21;21n+14) = PGCD(7(2n+3);7(3n+2)) أي: (5 . $PGCD(14n + 21; 21n + 14) = 7 \times PGCD(2n + 3; 3n + 2)$: $\frac{d}{d}/3(2n+3)$: غفرض أَنَّ $\frac{d}{d}/2(3n+2)$: عَفْرض أَنَّ $\frac{d}{d}/3(2n+3)$ ومنه $\frac{d}{d}/3(2n+3)$ ومنه $\frac{d}{d}/3(2n+3)$ أي : ومنهd=5 ، ومنهd=1 : يا ومنهd=5 ، إذنd=5 ، إذنd=5 ، إذنd=5 ، إذن . PGCD(14n+21;21n+14)=7 : ومنه $PGCD(14n+21;21n+14)=7\times 1$. PGCD(14n+21;21n+14)=35 : ومنه PGCD(14n+21;21n+14)=7 imes 56) الاجابة صحيحة ، لأنّ : . $\begin{cases} M = \overline{abc} = a \times 10^2 + b \times 10 + c = 100a + 10b + c \\ N = \overline{bca} = b \times 10^2 + c \times 10 + a = 100b + 10c + a \end{cases}$: \(\ldots \) M يقبل القسمة على M ، إذن M يقبل القسمة على M ، إذن M يقبل القسمة على M ، إذن M $100 \equiv 1$ (3) نعلم أنّ $100 \equiv 1$ (3) نعلم أنّ $100 \equiv 1$ (3) في $100 \equiv 1$ ، نعلم أنّ $100 \equiv 1$ $a+b+c\equiv 0$ اِذَنّ : (1) يَاذَنْ : نحسب الآن M-N=(100a+10b+c)-(100b+10c+a) ، M-N: أى . (9مضاعف لM-N=9(11a-10b-c) ، أي M-N=99a-90b-9c: مضاعفا ل مضاعفا ل مضاعفا ل د ا کان M-N علی M-N علی M-N علی کون $-a-b-c\equiv 0igl[3igr]$ ، إذن $2\equiv -1igl[3igr]$ ، و $2a-b-c\equiv 0igl[3igr]$ ، إذن $11a-10b-c\equiv 0igl[3igr]$ (بالضرب في (-1) أي : $a+b+c\equiv 0$) . وهذا ما توصَّلنا من قبل ، أنظر (1) . إذن M-N يقبل القسمة على M $2018 = 2a^4 + a^3 + 3a^2 + 2a + 1$: (a > 3) ، $2018 = \overline{21321}^{(a)}$: 3 ذ 3 (3) الإجابة خاطئة ، لأنّ $rac{oldsymbol{a}}{2} < \sqrt{31,764}$: $rac{oldsymbol{a}}{2}^2 < 31,764$: $rac{oldsymbol{a}}{2}^2 < \sqrt{1009}$: $rac{oldsymbol{a}}{2}^4 < 1009$: $rac{oldsymbol{a}}{2}^4 < 2018$: $rac{oldsymbol{a}}{2}^4 < 2018$. $({\color{red}a}=5)$ ومنه : $({\color{red}a}=4)$: الکن : $({\color{red}a}>3)$: لکن : $({\color{red}a}<5,63$

b' و a' و PGCD(a;b) هو d حيث d حيث d الإجابة صحيحة ، لأنّ : نعلم أنّ d'

: أوليّان فيما بينهما ، ولدينا PPCM(a;b) - PGCD(a;b) = 1، أي المينهما ، ولدينا

 $({\color{red}a}=4):$ التحقق من أجل \checkmark

. $\overline{21321}^{(4)} = 2 \times (4)^4 + 1 \times (4)^3 + 3 \times (4)^2 + 2 \times (4) + 1 = 633$: مرفوضة لأنّ

(a=5): التحقّق من أجل \checkmark

. $\overline{21321}^{(5)} = 2 \times (5)^4 + 1 \times (5)^3 + 3 \times (5)^2 + 2 \times (5) + 1 = 1461$: مرفوضة لأنّ

. $\overline{21321}^{(a)}$: يكتب يوجد نظام تعداد أساسه $\frac{a}{a}$ حيث 2018 يكتب

حل التمرين الرابع:

.
$$\frac{1}{n+1}$$
 . $\frac{1}{n+1}$. $\frac{1}{n+1}$

ج) يقبل القسمة على كل الأعداد الأوّلية الأصغر من 44,71 ، b_3 . $\sqrt{1999} pprox 44,71$ ، إذن هو أوّلي .

 $b_n \times c_n = 4 \times 10^{2n} - 1$

. و منه $a_{2n}: b_n \times c_n = a_{2n}:$ و منه

: و منه و منه ، $a_6=1999 imes2001:$ و منه ، $a_6=b_3 imes c_3:$ و منه ، $a_6=1999 imes3 imes23 imes29$

، $PGCD(b_n;c_n)=PGCD(c_n;c_n-b_n):$ وَ نَعَلَمُ أَنَّ PGCD(a;b)=PGCD(a;a-b): وَ نَعَلَمُ أَنَّ (PGCD(a;b)=PGCD(a;a-b): وَ الْحَالَ عَلَمُ أَنَّ (PGCD(a;b)=PGCD(a;a-b):

: اذن ، $(c_{_{n}}=2\times 10^{^{n}}+1)$ فردي ، $PGCD(b_{_{n}};c_{_{n}})=PGCD(c_{_{n}};2)$

 $PGCD(c_n; 2) = 1$

. و منه $b_n: \dot{b}_n:$ و منه فإنّ . $PGCD(b_n;c_n)=1$

 $b_3x + c_3y = 1.....(1)$ لدينا المعادلة (2)

. كا أنّ c_3 و أوّليان فيما بينهما ، إذن حسب مبرهنة بيزو المعادلة (1) تقبل على الأقل حلا (أ

: ينا $\begin{cases} 2001 = 1999 \times 1 + 2 \\ 1999 = 999 \times 2 + 1 \end{cases}$ ، إذن $\begin{cases} 2001 = 1999 \times 1 + 2 \\ 1999 = 999 \times 2 + 1 \end{cases}$

: أي $1999 - (2001 - 1999) \times 999 = 1$

. $1000 \times 1999 - 999 \times 2001 = 1$: و منه $1999 - 999 \times 2001 + 999 \times 1999 = 1$

إذن: (1) حل خاص للمعادلة (1) على خاص المعادلة

ج) حل في \mathbb{Z}^2 المعادلة (1) : 1999x+2001y=1 ، و لدينا : 1 = 1999(1000) بالطرح نجد :

.
$$1999(x-1000)=-2001(y+999)$$
 . $1999(x-1000)+2001(y+999)=0$. $k\in\mathbb{Z}$. حیث $\begin{cases} x=2001k+1000\\ y=-1999k-999 \end{cases}$: حسب غـــوص

كتابة الأستاذ: بلقاسم عبدالرّزاق