المستوى: الثالثة ثانوي.

الشعب: ع التجريبية، رياضيات، تقني رياضي.

السلسلة 01 الدوال العددية

Bac 2019

إعداد: عبعوب محمد

تلاميذ الاستاذ عبعوب محمد: Facebook

التمرين <u>01:</u>

 $f(x) = \frac{3x^2 - 12x + 10}{x^2 - 4x + 3}$: بالدالة العددية للمتغير الحقيقي x المعرفة على $f(x) = \frac{3x^2 - 12x + 10}{x^2 - 4x + 3}$

 $(0;\vec{t};\vec{j})$ و ليكن \mathcal{C}_{f} منحنيها البياني في المستوي المنسوب إلى معلم متعامد و متجانس

1. ادرس تغيرات الدالة f.

. عين إحداثيات نقط تقاطع المنحني C_f مع المحورين الاحداثيين 2

. f(2-x)=f(2+x)، وأثبت صحة المساواة لكل عدد حقيقي x يختلف عن 2.

 C_f ماذا يمكن استنتاجه بالنسبة للمنحني.

. $(0;\vec{\imath};\vec{\jmath})$ ارسم المنحني C_f في المستوي المنسوب لمعلم متعامد و متجانس C_f

x حسب قيم f(x) عدد إشارة ويم f(x) عسب ويم C_f

التمرين 02:

 $f(x) = \frac{x^2 - 8x + 16}{x - 3}$: بالدالة العددية للمتغير الحقيقي x المعرفة على x = 10 الدالة العددية للمتغير الحقيقي x المعرفة على x = 10

 $(0;\vec{t};\vec{j})$ نسمي المنتني الممثل للدالة f في المستوي المنسوب إلى معلم متعامد و متجانس

 $f(x)=ax+b+rac{c}{x-3}$: D_f من x من أجل كل x من أجل كل و b ، a و b ، a

2. استنتج ان المنحني C_f الممثل للدالة f يقبل مستقيما مقاربا مائلا Δ عند ∞ و عند ∞ يطلب تعيين معادلة له ثم حدد وضعية المنحني C_f بالنسبة إلى Δ .

f ادرس تغیرات الداله f.

 C_f . أوجد إحداثيي النقطة ∞ تقاطع المستقيمين المقاربين و اثبت أنها مركز تناظر المنحني 4

 $.C_f$ ارسم المنحني.

البياني $h(x)=\frac{(x-4)^2}{|x-3|}$ نتكن الدالة المعرفة ب $(x)=\frac{(x-4)^2}{|x-3|}$ نتكن الدالة المعرفة ب

h الممثل للدالة C' الممثل للدالة

التمرين 03:

$$f(x)=2x+3-rac{1}{(x+1)^2}$$
 : ب $\mathrm{R}-\{-1\}$ الدالة العددية للمتغير الحقيقي x المعرفة على f

 $(0;\vec{t};\vec{f})$ سماه و متعامد و المنسوب المنسوب المستوي المستوي المستوي المستوي المنسوب المنحني الممثل الدالة

- C_f ادرس تغيرات الدالة f و اكتب معادلة لكل من المستقيمين المقاربين للمنحنى (1
 - 2) عين وضعية المنحني بالنسبة للمستقيم المقارب المائل.
 - $\left[\frac{-3}{8}; \frac{-1}{4}\right]$ بين أن المعادلة f(x)=0 تقبل حلا وحيدا α على المجال (3
 - x استنتج اشارة f(x) حسب قيم (4
 - 5) اكتب معادلة للمماس ∆عند النقطة ذات الفاصلة 0.
 - C_f ارسم المماس Δe المنحني (6
- f(x) = m: ناقش بيانيا وحسب قيم الوسيط الحقيقي m وجود و إشارة حلول المعادلة (7

التمرين <u>04:</u>

الدالة العددية للمتغير الحقيقي χ المعرفة $R-\{-1\}$ معرفة بجدول تغيراتها f

X	-∞ -	2 –	1	0 +∞
f'(x)	+	ı	ı	+
f(x)	-2 		8	**************************************

حيث f من الشكل $\frac{c}{x+1}$ عداد حقيقية $f(x)=ax+b+\frac{c}{x+1}$ عداد حقيقية

- مستعينا بجدول التغيرات b ، a و b مستعينا بجدول التغيرات -1
- y=x+1 معادلته (Δ) التمثیل البیانی یقبل مستقیما مقاربا مائلا -2
 - (Δ) ادرس وضعية (C_f) بالنسبة لـ (Δ)
 - (C_f) ارسم المنحنى -4

التمرين <u>05:</u>

$$f(x) = \frac{x^2 + 5x + 2}{x^2 + 4x}$$
 : بالدالة العددية للمتغير الحقيقي x الدالة العددية للمتغير الحقيقي $f(x) = \frac{x^2 + 5x + 2}{x^2 + 4x}$

 $(O; \vec{\imath}; \vec{j})$ منحنيها البياني في المستوي المنسوب إلى معلم متعامد و متجانس

- \mathcal{C}_f و اكتب معادلات المستقيمات المقاربة للمنحني f ادرس تغيرات الدالة المنحني و اكتب معادلات المستقيمات المقاربة المنحني
 - . C_f مركز تناظر للمنحني $\omega(-2;1)$ اثبت أن النقطة (2

- $. \infty$ اكتب معادلة المماس (Δ) المنحني النقطة (3
- (4) احسب C_f مع حامل محور الفواصل ثم ارسم المماس f(2) ، f(1) ، f(-1) مع حامل محور الفواصل ثم ارسم المماس و المنحني C_f .

التمرين06:

$$f(x)=a+rac{b}{x-3}$$
 : بالدالة العددية للمتغير الحقيقي x المعرفة على f

- 1- أوجد العددين الحقيقيين a ، a بحيث يكون المنحنى b ، a يقطع حامل محور التراتيب في النقطة التي ترتيبها $\frac{4}{3}$ ويقبل مستقيم مقارب أفقي معادلته y=2
 - 2- ادرس تغيرات الدالة f
 - (C) عين احداثيات نقط تقاطع المنحني ((C)) مع المحورين الاحداثيين
 - 4- بين أن المنحنى (C) يقبل مماسين معامل توجيه كل منهما يساوي 2- يطلب إيجاد معادلتيهما
 - أنشئ المنحنى (C) والمماسين -5

<u>التمرين 07:</u>

- $g(x) = x^3 3x 4$ نعتبر الدالة g المعرفة على R بالعبارة (I
 - g ادرس تغیرات الداله (1
 - $2;rac{5}{2}$ بين أن المعادلة :g(x)=0 تقبل حلا وحيدا lpha في المجال (2
 - R على على استنتج اشارة g(x) على (3

$$f(x) = \frac{x^2(x+2)}{x^2-1}$$
 : بالعبارة $R - \{-1; 1\}$ على (II

(الوحدة (C_f) حيث C_f) حيث البياني في معلم متعامد و متجانس C_f) حيث

- . عين p_f مجموعة تعريف الدالة f ثم احسب النهايات للدالة f عند أطرافها D_f
- $f(x)=ax+b+rac{cx+d}{x^2-1}$: عين الاعداد الحقيقية a , b , c , d بحيث من اجل كل عدد حقيقي a , b , c , d
 - . بين أن $\binom{C_f}{2}$ يقبل مستقيما مقاربا مائلا (Δ) يطلب إعطاء معادلته .
 - $\left(C_{f} \right)$ ادر س الوضعية النسبية للمستقيم (Δ) و المنحني -4
 - بین أن $\binom{C_f}{1}$ یقبل مستقیمین مقاربین عمودیین -5
 - x.g(x) بين أن اشارة f'(x) تتعلق بإشارة -6
 - f اكتب جدول تغيرات الدالة
 - f التمثيل البياني للدالة -8
 - f(x)-1=m : ناقش بيانيا وحسب قيم الوسيط الحقيقي m وجود و إشارة حلول المعادلة

التمرين 80:

$$f(x)=rac{4(x-1)}{(x-2)^2}$$
 : ب $R-\{2\}$ الدالة العددية للمتغير الحقيقي x المعرفة على f

 $(O;\vec{l};\vec{j})$ سمي المنتني الممثل للدالة f في المستوي المنسوب إلى معلم متعامد و متجانس

f ادرس تغیرات الدالة f

ي اكتب معادلة المماس (Δ) للمنحني C_f عند نقطة تقاطعه مع حامل محور الفواصل $^{\prime}$

. المماس (Δ) يقطع المنحني c_f في النقطة B يطلب تعيين إحداثيتها C_f

 C_f احسب f(-2) ، f(-1) ، f(-1) ، f(-2) احسب f(-2) .

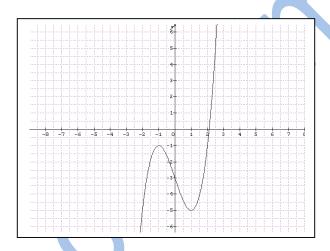
$$y=4x+m$$
 : مستقيم معادلته (Δ_m) ، وسيط حقيقي m (ب

 (Δ_m) و C_f و ناقش بيانيا و حسب قيم الوسيط الحقيقي m عدد النقط المشتركة بين المنحني -

$$h(x) = \left(\frac{x-1}{x-3}\right)^2$$
 : كما يلي R $-$ {3} المعرفة على R ألمعرفة على 1- تعطى الدالة المعرفة على 2- المعرفة على 8- المعرفة على 2- المعرفة على 1- تعطى الدالة المعرفة على 8- المعرفة على 1- تعطى الدالة المعرفة على 8- المعرفة على 1- تعطى الدالة المعرفة على 1- تعطى 1- تعطى 1- تعطى الدالة المعرفة على 1- تعطى الدالة المعرفة على 1- تعطى 1

$$h(x) = f(x-1) + 1$$
: تحقق من أن

h الممثل الدالة C_f استنتج رسم المنحني C_f الممثل الدالة C_f



التمرين 90:

المنحنى C المقابل هو التمثيل البياني I

للدالة العددية g المعرفة على المجال R

$$g(x) = ax^3 + bx + c$$
 کما یأتی

$$\left[2;\frac{5}{2}\right]$$
 عن المعادلة α عن المجال α تقبل حلا وحيدا α عن المجال α عن 13; α

Rعلى
$$g(x)$$
 على 4-

$$f(x) = \frac{2x^3+3}{x^2-1} + 1$$
 : بالعبارة D = R - {-1; 1} دالة معرفة على f - II

وليكن (Γ) تمثيلها البياني في معلم متعامد $(\Gamma; \vec{i}; \vec{j})$.

$$f'(x) = \frac{2x \cdot g(x)}{(x^2 - 1)^2}$$
: R - {-1; 1} من $f'(x) = \frac{2x \cdot g(x)}{(x^2 - 1)^2}$: R - {-1; 1}

ب) عين دون حساب
$$\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha}$$
 و فسر النتيجة بيانيا .

$$f$$
 شكل جدول تغيرات الدالة

$$f(\alpha)$$
 بين أن $f(\alpha)=3\alpha+1$ ثم استنتج حصر اللعدد (ه)

$$(\Gamma)$$
 بين أن المستقيم (Δ) ذا المعادلة (Δ) المعادلة (Δ) بين أن المستقيم مقارب مائل المنحني

ثم ادرس وضعية المنحني
$$(\Gamma)$$
 بالنسبة للمستقيم (Δ)

 (Γ) ارسم

التمرين <u>10:</u>

$$f(x) = ax + b + \frac{c}{x-1}$$
 : بالدالة العددية للمتغير الحقيقي x المعرفة على f

وتكون
$$A(0;-3)$$
 الدالة f يشمل النقطة a و b ، c و a بحيث يكون المنحنى a الدالة b بشمل النقطة a وتكون a النقطة a النقطة a النقطة a النقطة a بحيث يكون المنحنى a

$$C_f$$
 ادرس تغيرات الدالة f واكتب معادلات المستقيمات المقاربة للمنحنى -2

$$C_f$$
بين أن نقطة تقاطع المستقيمين المقاربين 0 هي مركز تناظر للمنحنى -3

$$C_f$$
 أنشئ المنحنى -4

و الدالة المعرفة ب : يوري
$$g(x) = \frac{x^2+3}{|x-1|}$$
 الدالة المعرفة ب : يوري تمثيلها البياني g

 C_f انظرة من المنحنى (γ) انظرة من المنحنى -

التمرين 11:

$$f(x)=rac{x^3+2x^2}{(x+1)^2}$$
 : ب $R-\{-1\}$ الدالة العددية للمتغير الحقيقي x المعرفة على f

 $(0;\vec{\imath};\vec{j})$ المنحني الممثل للدالة f في المستوي المنسوب إلى معلم متعامد و متجانس f ادرس تغيرات الدالة f

$$f(x) = \alpha x + \frac{\beta}{x+1} + \frac{\gamma}{(x+1)^2}$$
 : D_f من أجل كل x من أجل كل γ و β ، α و β ، α و β ، α

له المنحني
$$C_f$$
 يقبل مستقيم مقارب مائل يطلب إعطاء معادلة ديكار تيه له /3

. ادرس وضعية المنحني بالنسبة للمستقيم المقارب المائل C_f

احسب احداثيات نقطتي تقاطع المنحني
$$C_f$$
 مع حامل محور الفواصل 5

$$\Delta$$
بين أن المنحني C_f يقبل مماسا معامل توجيهه 1 . اكتب معادلة لـ /6

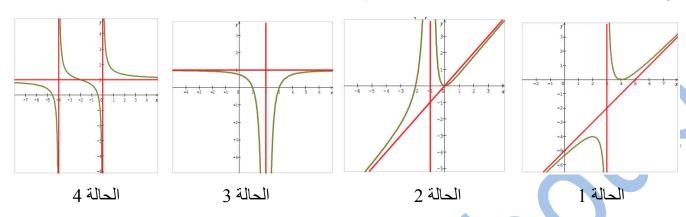
$$C_f$$
 أنشيء المماس Δ و المنحني/7

$$f(x) = x + m$$
 : فيم الوسيط الحقيقي m وجود و إشارة حلول المعادلة m

بالتوفيق في شهادة البكالوريا

التمرين 12:

في كل حالة من الحالات التالية عين نهايات كل دالة ثم شكل جدول تغيراتها



التمرين 13: BAC2014 s

$${
m g}(x)=2x^3-4x^2+7x-4$$
: كما يأتي R كما يأتي و الدالة العددية المعرفة على 2 كما يأتي الدالة العددية المعرفة على 2 كما يأتي

- $\lim_{x\to +\infty} g(x)$ اً. احسب $\lim_{x\to -\infty} g(x)$ و $\lim_{x\to -\infty} g(x)$ أ. احسب (1 برس اتجاه تغير الدالة g على R ثم شكل جدول تغير اتها.
- $\alpha<0.8$ أ. بين أن المعادلة g(x)=0 تقبل حلا وحيدا α حيث ان g(x)=0 أ. بين أن المعادلة g(x)=0 تقبل علاد الحقيقي α اشارة α

$$f(x) = \frac{x^3 - 2x + 1}{2x^2 - 2x + 1}$$
: Hushing R substitution of the property of the proper

 $(0;ec{t};ec{j})$ وليكن (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس

- $\lim_{x\to+\infty} f(x)$ احسب $\lim_{x\to-\infty} f(x)$ و $\lim_{x\to\infty} f(x)$ المبين أنه من اجل كل $\lim_{x\to\infty} f(x)$ (2)
- $f(x) = \frac{1}{2}(x+1) + \frac{1-3x}{2(2x^2-2x+1)}$

ب استنتج ان (C_f) يقبل مستقيما مقاربا مائلا (Δ) يطلب تعيين معادلة له ج ادرس الوضع النسبي للمنحنى (C_f) و (Δ) .

$$f'(x) = \frac{x.g(x)}{(2x^2-2x+1)^2}$$
 : R مشتقة الدالة $f'(x) = \frac{x.g(x)}{(2x^2-2x+1)^2}$: R أ. بين أنه من أجل كل عدد حقيقي

f(lpha)pprox -0.1ب. استنتج اشارة f'(lpha)pprox f'(lpha) جمسب قيم lpha ثم شكل جدول تغيرات الدالة

- . f(x)=0 المعادلة R ثم حل في (1) احسب (4
 - رك) أنشئ المستقيم (Δ) و المنحنى (5).
- $h(x) = \frac{x^3 4x^2 + 2x 1}{2x^2 2x + 1}$ يتكن h الدالة المعرفة على R كما يلي: (6

و (C_h) تمثيلها البياني في المعلم السابق.

h(x) = f(x) - 2 : $x \in R$ أ. تحقق أنه من اجل كل

. (C_h) هو صورة (C_f) بتحویل نقطي بسیط یطلب تعیینه ثم انشی (C_h)

التمرين 14:

$$P(x) = -x^3 + 6x^2 - 13x + 8$$
 : کثیر حدود حیث $P(x)$ (I

P(x) احسب الحدود P(1)واستنتج تحليلا لكثير الحدود الحدود

xادر س إشارة P(x) حسب قيم /2

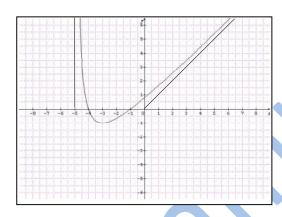
$$f(x) = -x + 1 + \frac{x-1}{(x-2)^2}$$
 : معرفة ب عددية للمتغير الحقيقي x معرفة ب المتغير الحقيقي f

fالدالة D_f عين مجموعة التعريف الدالة D_f

$$f'(x) = \frac{P(x)}{(x-2)^3}$$
 : بين أنه مهما يكن العدد الحقيقي x من D_f من العدد الحقيقي -2

- f ادرس تغیرات الداله f
- . بين أن المنحني C_f الممثل للدالة f يقبل مستقيم مقارب مائل Δ يطلب تعيين معادلة له . 4
 - 5- ادرس وضعية المنحني C_{r} بالنسبة للمستقيم المقارب المائل .
 - . 3 كتب معادلة المماس (T) للمنحني عند النقطة ذات الفاصلة -6
 - C_f و المنحني (T) ارسم المستقيمين (T) و المنحني 7

التمرين 15:



$$f(x) = \frac{x^2 + 5x + 4}{x + 5}$$
: اب $I =]-5$; $+\infty$ على f . I

تمثیلها البیانی فی مستوی منسوب إلی معلم متعامد و متجانس C_f کما هو مبین فی الشکل .

I) أ- احسب نهایات f عند الحدود المفتوحة ل f بیانیة و دون در اسة اتجاه تغیر ات f شکل جدول تغیر اتها .

$$g(x)=rac{x^2+5x+4}{-x-5}$$
 : إبالعبارة: $g(x)=rac{x^2+5x+4}{-x-5}$: الدالة العددية المعرفة على المجال $g(x)=rac{x^2+5x+4}{-x-5}$

 $(0;ec{t};ec{j})$ تمثیلها البیاني في مستوي منسوب إلى معلم متعامد و متجانس (C_g)

أ- أحسب نهاية g عند حدود مجموعة تعريفها g

ب- تحقق من أن (C_g) يقبل مستقيما مقاربا مائلا (Δ) عند ∞ —يطلب تعيين معادلة له ج- ادر س تغير ات g

$$k(x) = \frac{x^2 + 5x + 4}{|x + 5|}$$
 : كما يلي $R - \{-5\}$ كما يلي .II

- اكتب k(x) بدون رمز القيمة المطلقة (1
- k من نتائج الجزء الأول شكل جدول تغيرات الدالة (2
- ارسم (C_k) المنحني الممثل للدالة k في معلم متعامد و متجانس (3

التمري<u>ن 16:</u>

$$f(x) = \frac{x^3 + 3x^2 + 10x + 5}{(x+1)^2}$$
 : بالدالة العددية للمتغير الحقيقي x المعرفة على $f(x) = \frac{x^3 + 3x^2 + 10x + 5}{(x+1)^2}$

 $(0;\vec{t};\vec{j})$ سمتاه و متعامد متعامد و المستوي المستوي المستوي المستوي المستاه و متجانس المستوي المستوي

$$f(x)=x+lpha+rac{eta}{x+1}+rac{\gamma}{(x+1)^2}$$
 : D_f من χ من أجل كل χ من β ، α و γ بحيث يكون من أجل كل

معادلة $-\infty$ المنتنج أن المنحني C_f الممثل للدالة C_f يقبل مستقيما مقاربا مائلا Δ عند $-\infty$ و عند عبين معادلة له ثم حدد وضعية المنحني C_f بالنسبة إلى Δ

3/ ادرس تغيرات الدالة f

$$C_f$$
 عين عدد حلول المعادلة $f(x)=0$ ثم ارسم المنحني /4

m عين حسب قيم الوسيط الحقيقي m عدد و إشارة حلول المعادلة :

$$3x^2 + (x - m)x^2 + (10 - 2m)x + 5 - m = 0$$

$$g(x) = \frac{|x|^3 + 3x^2 + 10|x| + 5}{(|x| + 1)^2}$$
 : الدالة المعرفة ب $g(x) = \frac{|x|^3 + 3x^2 + 10|x| + 5}{(|x| + 1)^2}$

أ) بين أن الدالة gزوجية .

(f) بين أن المنحني (Γ) الممثل للدالة g يستنتج بسهولة من رسم المنحني (Γ)

- ارسم (۲)

التمرين 17:

$$f(x)=x-rac{2}{\sqrt{x+1}}$$
 : الدالة العددية للمتغير الحقيقي x المعرفة على $x=1$; $+\infty$ الدالة العددية للمتغير الحقيقي المعرفة على x

 $(O;ec{\iota};ec{\jmath})$ منحني الدالة f في المستوي المنسوب إلى المعلم المتعامد و التجانس (C_f)

- f ادرس تغیرات الداله (1
- y=x: أ- بين أن المنحني C_f يقبل مستقيمين مقاربين أحدهما (D) معادلته x=x (D) أ- بين أن الوضعية النسبية للمنحني x=xو
- . $1.3 < x_0 < 1.4$: يين أن C_f يقطع محور الفواصل في نقطة وحيدة فاصلتها x_0 حيث $x_0 < 1.4$. $x_0 < 1.4$

. ارسم (Δ) و رود ارسم \mathcal{C}_f في نفس المعلم

$$g(x)=|f(x)|$$
 : بالعبارة $g(x)=-1$ الدالة العددية الدالة العددية المعرفة على المجال $g(x)=-1$ بالعبارة ولمعلم السابق . $g(x)=-1$ منحنى الدالة g فى المعلم السابق .

بين كيف يمكن إنشاء (C_g) انطلاقا من C_f ، ثم ارسمه في نفس المعلم السابق -

$$g(x)=m^2$$
 ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد و إشارة حلول المعادلة $(5$

التمرين 18:

$$f(x) = \sqrt{(x-2)^2} + \frac{1}{x-1}$$
 : ب $R - \{1\}$ الدالة العددية للمتغير الحقيقي χ المعرفة على f

1- ادرس استمراریة و قابلیة الاشتقاق للدالة fعند القیمة 2 وفسر النتیجة بیانیا

2- اكتب معادلتي نصفي المماسين

fادرس تغیرات الداله -3

پین ان y=-x+2 و y=x-2 مستقیمین مقاربین مائلین بجوار y=x-2 و y=-x+2

$$0;\frac{1}{2}$$
 على المعادلة α على قبل حلا وحيدا $f(x)=0$ على المجال -5

 C_f أنشئ المنحنى -6

 $|x-2| + \frac{1-m(x-1)}{x-1} = 0$ عدد حلول المعادلة m عدد الوسيط الحقيقي m عدد عدد علول المعادلة

التمرين 19:

$$f(x) = \frac{(x-2)^2}{x^2-1}$$
 : بالعبارة R $-\{-1;1\}$ دالة معرفة على f

 $(0; \vec{t}; \vec{j})$ تمثيلها البياني في معلم متعامد و متجانس \mathcal{C}_f

- f ادرس تغيرات الدالة
- (Δ) عين احداثية نقطة تقاطع C_f مع المستقيم المقارب الافقي
 - C_f أنشئ المنحنى -

$$(m-1)x^2+4x-m-4=0$$
 : خاقش بيانيا حسب قيم العدد الحقيقي m حلول المعادلة :

$$g(x) = \frac{(|x|-2)^2}{x^2-1}$$
: عتبر الدالة g المعرفة بالعبارة : 2

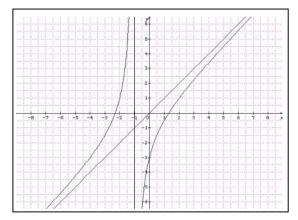
- اكتب g(x) دون رمز القيمة المطلقة .
- . g عند g عند ادرس استمرارية و قابلية الاشتقاق للدالة
- بين أن g(x)=f(x) على مجموعة يطلب تعيينها .
- . g ادرس شفعية الدالة g استنتج التمثيل البياني (C^\prime) للدالة

$$h(x) = \frac{(x-2)^2}{|x^2-1|}$$
 : عتبر الدالة h حيث : 3

- f(x)بدلالة h(x): اكتب العبارة
- h استنتج التمثيل البياني (γ) للدالة

التمرين 20:

$$f(x) = \frac{x^2 + x - 3}{x + 1}$$
 : كمايلي : R $- \{-1\}$ الدالة العددية للمتغير الحقيقي x المعرفة على $f(x) = \frac{x^2 + x - 3}{x + 1}$



 $(O; \vec{\imath}; \vec{j})$ تمثیلها البیاني في معلم متعامد و متجانس تمثیلها البیاني في معلم متعامد و تمثیلها

- 1- عين نهايات الدالة عند حدود مجموعة التعريف
- -1نه من اجل على عدد حقيقي χ يختلف عن -2

فان
$$a,b,c$$
 حيث $f(x)=ax+b+rac{c}{x+1}$ اعداد حقيقية بطلب تعينها

- C_f استنتج معادلات المستقيمات المقاربة للمنحنى -3
- 4- حدد الوضع النسبي للمنحنى C_{f} و المستقيم المقارب المائل

التمرين 21:

- $g(x) = 2x^3 + x^2 1$: نعتبر الدالة g المعرفة بالعبارة .I
 - g ادرس تغيرات الداله.
- . $\frac{1}{2}$; $\frac{3}{4}$ المعادلة α المعادلة g(x)=0: قبل حلا وحيدا α أن المعادلة α
 - R على g(x) على x

$$f(x) = \frac{x^3 + x^2 + 1}{3x}$$
: بعتبر الدالة f المعرفة على * R بالعبارة:

 $(2\mathrm{cm}$ حيث (\mathcal{C}_f) تمثيلها البياني في معلم متعامد و متجانس (\mathcal{C}_f) (الوحدة

ادرس نهایات الداله f علی أطراف مجال التعریف. 1

g(x) من إشارة f'(x) من إشارة R^* من عن أجل كل f

f أدرس اتجاه تغير الدالة f ثم شكل جدول تغيراتها .

 $f(\alpha)$ بين أن $f(\alpha) = \frac{\alpha}{6} + \frac{1}{2\alpha}$ ثم استنتج حصر اللعدد 4.

 $(lphapproxrac{2}{3}$ أنشئ المنحنى C_f حيث (نأخذ

 $3m(1-x)+x^2(x+1)-3m+1=0$: في عدد حلول المعادلة. 6

حيث m وسيط حقيقي.

التمرين 22: BAC2017 m.t

$$g(x)=x^3+6x+12$$
 : كما يلي كما يلي المعرفة على g المعرفة على ا

g ادرس اتجاه تغیر الدالهg

يبين أن المعادلة :g(x)=0 تقبل حلا وحيدا α في المجال]g(x)=0 ثم استنتج حسب قيم العدد ويبين أن المعادلة g(x)=0 .

$$f(x) = \frac{x^3-6}{x^2+2}$$
 : كما يلي R كما المعرفة على الدالة الدالة المعرفة على الدالة الدالة

 $(O; \vec{\imath}; \vec{j})$ تمثيلها البياني في المعلم المتعامد و المتجانس تمثيلها البياني في المعلم المتعامد و المتجانس

 $\lim_{x\to+\infty} f(x)$ احسب $\lim_{x\to-\infty} f(x)$ ا

$$f'(x) = \frac{x.g(x)}{(x^2+2)^2}$$
 : x عدد حقیقی ب (بین أن من أجل كل عدد حقیقی

ثم ادرس اتجاه تغير الدالة ر وشكل جدول تغير اتها.

$$(C_f)$$
 مقارب مائل للمنحنى (Δ) ذا المعادلة $y=x$ مقارب مائل للمنحنى (Δ

ب) ادرس وضعية المنحنى
$$(C_f)$$
 بالنسبة الى المستقيم (Δ) .

$$f(\alpha)$$
 بين أن $f(\alpha) = \frac{3}{2}$ ثم استنتج حصر اللعدد (3

$$(C_f)$$
 ارسم المستقيم (Δ) و المنحنى (4

5) نرمز ب
$$S$$
 الى مساحة الحيز المستوي المحدد بالمنحنى (C_f) والمستقيمات اللتي معادلاتها

$$y = 0$$
 و $x = 0$

 $\frac{3}{2}\alpha^2 \leq S \leq -3\alpha$: ثم بین أن $-3 \leq f(\alpha)$. $x \in [\alpha, 0]$ ثثبت انه من اجل كل

التمرين 23:

المعرفة g المقابل هو التمثيل البياني لدالة

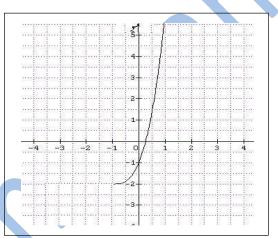
$$g(x) = x^3 + 3x^2 + 3x - 1$$
 على] $[-1, +\infty]$ على] على

$$g\left(\frac{1}{2}\right)$$
بقراءة بيانية حدد (0) واشارة و1.

$$g$$
شكل جدول تغيرات الدالة.

$$]0$$
 ; $\frac{1}{2}$ [من المجال g تقبل حلا وحيد α من المجال g

$$g$$
استنتج اشارة الدالة.



$$f(x) = \frac{x^3 + 3x^2 + 3x + 2}{(x+1)^2}$$

$$]-1$$
, $+\infty$ [الله معرفة على: f

وليكن (C_f) منحناها البياني في المعلم المتعامد والمتجانس وليكن

$$f'(x) = \frac{g(x)}{(x+1)^3}$$
 فان D فان کل عدد حقیقی عدد عدد متنقق أنه من أجل كل عدد الم

ا وفسر النتيجة بيانيا. $\lim_{x\to\alpha}\frac{f(x)-f(\alpha)}{x-\alpha}$ وفسر النتيجة بيانيا.

fادرس تغيرات الداله.

.
$$f(\alpha)$$
ا استنتج حصرا ل $f(\alpha) = \frac{3}{(\alpha+1)^2}$ بين أن 4.

 (C_f) دو المعادلة y=x+1 مستقيم (Δ) دو المعادلة 5. بين أن المستقيم (Δ) دو المعادلة 5. بين أن المستقيم (Δ)

اکتب
$$f(x)=x+a+rac{b}{(x+1)^2}$$
 على الشكل الشكل الشكل الشكل $f(x)=x+a+rac{b}{(x+1)^2}$ عددان حقيقيان .6

F(1)=2 : والتي تحقق f على المجال f على المجال f الدالة الاصلية لدالة f على المجال f

التمرين 24:

 $f(x)=\sqrt{x^2-2x+2}$: كما يأتي R كما المعروفة على χ المعروفة على χ المعلو المتعامد و التجانس $(0;\vec{\imath};\vec{\jmath})$ منحني الدالة f في المستوي المنسوب إلى المعلم المتعامد و التجانس (C_f)

f ادرس تغیرات الداله f

y=-x+1و y=x-1 وين ان يقبل (C_f) مستقيمين مقاربين مائلين معادلتيهما -2

3- بين ان المستقيم ذو المعادلة x=1 هو محور تناظر

f انشئ منحنى الدالة f .

التمرين 25:

 $g(x) = x^3 + 6x^2 + 12x + 7$: كما يأتي R كما يأتي و الدالة العددية المعرفة على 2 كما يأتي الدالة العددية المعرفة على 3 كما يأتي

 $.lim_{x o +\infty} g(x)$ أ. احسب $\lim_{x o -\infty} g(x)$ أ. احسب (1

ب. أدرس اتجاه تغير الدالة g على R على الدول تغير اتها.

. g(x)استنتج حسب قيم العدد الحقيقي g(-1) استنتج حسب (2

$$f(x) = x + \frac{3}{2} + \frac{1}{2(x+2)^2}$$
 : بالعبارة R $-\{-2\}$ على الدالة معرفة على R $-\{-2\}$ بالعبارة وليكن (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس (C_f) تمثيلها البياني في المعلم المتعامد والمتعامد والمتع

 $\lim_{x\to+\infty} f(x)$ احسب $\lim_{x\to-\infty} f(x)$ احسب (1

ا أحسب كلا من: $\lim_{x \to -2} f(x)$ و $\lim_{x \to -2} f(x)$ أحسب كلا من: $\lim_{x \to -2} f(x)$

 $f'(x) = \frac{g(x)}{(x+2)^3}$:R - {-2} من x عدد حقیقی عدد عدد عند عدد عدد (3

استنتج اتجاه تغیر الدالة f على R ثم شكل جدول تغیر اتها.

-3 < lpha < -2.5 بين أن المعادلة f(x) = 0 تقبل حلا وحيدا lpha بحيث (5

 (C_f) استنتج ان (C_f) یقبل مستقیما مقار با مائلا (Δ) یطلب تعیین معادلهٔ له. ثم ادر س وضعیته بالنسبهٔ لـ (C_f)

 (c_f) انشئ المنحنى (7

f(x)=m-1 : ناقش بيانيا تبعا لقيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة :

$$h(x) = f(|x|)$$
 : بعتبر h الدالة المعرفة على R بالعبارة (9

h أ- ادرس شفعية الدالة

f انشئ منحنى الدالة h انطلاقا من منحنى الدالة

 $g(x) = \frac{1}{x+2}$ أ. احسب الدالة المشتقة لدالة g حيث g

x=3 و x=2 و المستقيمين x=2 و المستقيمين x=2

التمرين 26:

[-3;3] للدالة العددية f معرفة وقابلة للاشتقاق على المجال

A(-3;9)المنحني C يمر بالمبدأ O ويشمل النقطة

ويقبل في النقطة B مماسا افقيا ويقبل المستقيم (OA) مماسا

عند النقطة 0

$$f(x)=ax^3+bx^2+cx+d$$
 : لتكن f معرفة بالعبارة التالية

f(0) = f'(0) = f'(1)

a, b, c, d: أوجد الأعداد الحقيقية -2

3-أكتب جدول تغيرات الدالة g

 $\left[rac{3}{2};2
ight[$ بين أن المعادلة f(x)=0 تقبل حلا وحيدا lpha من المجال f(x)=0

[-3;3]على g(x) على 5-

<u>التمرين 27:</u>

 $g(x)=x^3-2x^2+x+1$: يعتبر الدالة g المعرفة على R كما يلي . I

g ادرس اتجاه تغیر الدالهg

xبين أن المعادلة :g(x)=0 تقبل حلا وحيدا lpha في المجال a المجال a ثم استنتج حسب قيم العدد الحقيقي a إشارة a.

 $f(x) = \frac{x^3 - 2x^2 + x + 1}{x^2 - 2x + 2}$: يعتبر الدالة f المعرفة على f كما يلي : III

 $(0; ec{t}; ec{j})$ تمثيلها البياني في المعلم المتعامد والمتجانس وليكن

 $f(x)=x-rac{x-1}{x^2-2x+2}$: فان R من R عدد حقیقی x من عدد عقیقی البتان ان من أجل كل عدد عقیقی

$$f'(x) = \frac{(x-1)^2[(x-1)^2+3]}{[(x-1)^2+1]^2}$$
 : R من x عدد حقیقی x عدد حقیقی x عدد حقیقی x عدد حقیقی x

ادرس تغيرات الدالة f وشكل جدول تغيراتها.

$$y=x$$
 مقارب مائل للمنحنى (Δ) ذا المعادلة و مقارب مائل للمنحنى (Δ -4

ب) ادرس وضعية المنحنى
$$(C_f)$$
 بالنسبة الى المستقيم (Δ).

انشئ منحنى الدالة
$$f$$
 والمماسات.

$$f(x) = x + m$$
: ناقش بیانیا وجود و عدد حلول المعادلة

التمرين 28:

$$f(x)=(x+1)\sqrt{1-x^2}$$
 : كما يأتي x المعرفة على x المعرفة على x الدالة العددية للمتغير الحقيقي x

 $(0;\vec{\imath};\vec{\jmath})$ منحني الدالة f في المستوي المنسوب إلى المعلم المتعامد و التجانس (C_f

- 1) ادر سقابلیة الاشتقاق عند 1-e 1 ثم فسر النتیجتین هندسیا
 - f ادرس تغیرات الداله (2)
 - O أعند المبدأ (C_f) اكتب معادلة المماس (T) المنحنى (C_f) عند المبدأ (C_f)

$$(T)$$
 و (C_f) ب) ادرس الوضعية النسبية للمنحني

$$(C_f)$$
 ارسم المنحنى (4

التمرين 29:

$$h(x) = x^3 + 3x^2 + 3x + 2$$
 : كما يلي R كما يلي .I

h ادرس تغيرات الداله. h

$$h(x)$$
 استنتج حسب قيم العدد الحقيقي x إشارة الدالة.

$$f(x) = \frac{2x^3 + 7x^2 + 8x + 2}{(x+1)^2}$$
 : كما يلي $R - \{-1\}$ كما يلي : $R - \{-1\}$

 $(0; \vec{\imath}; \vec{j})$ تمثيلها البياني في المعلم المتعامد والمتجانس وليكن

$$f'(x) = \frac{2 h(x)}{(x+1)^3}$$
 : فان $R - \{-1\}$ من x عدد حقیقي x من أجل كل عدد حقیقي

2- ادر س تغیرات الدالهٔ f وشکل جدول تغیراتها.

$$f(x)=ax+b+rac{c}{(x+1)^2}$$
: بين انه يوجد ثلاثة اعداد حقيقية a , b , c بحيث عنانه يوجد ثلاثة اعداد حقيقية

 (Δ) الممثل للدالة f يقبل مستقيمين احداهما مائل (C_f) بين أن المنحنى

 (Δ) ألمستقيم المنحنى المستقيم ((C_f)) بالنسبة الى المستقيم

$$\left[\frac{-3}{8}; \frac{-1}{4}\right]$$
 في المجال α في المجال $f(x) = 0$: حبين أن المعادلة $f(x) = 0$

f انشئ منحنی الداله f

$$f(x)=2x+m$$
 عدد نقاط تقاطع (C_f) والمستقيم الذي معادلته m عدد تقاط عدد نقاط عدد تقاطع والمستقيم الذي معادلته عدد تقاطع والمستقيم الذي معادلته m

$$g(x) = f(|x|)$$
 : بالعبارة على R بالعبارة على المعرفة على 8

أ- بين ان g دالة زوجية

f انشئ منحنى الدالة gانطلاقا من منحنى الدالة الب

لتمرين 30:

$$f(x) = |x+1| + \frac{x}{x^2-1}$$
 : بالدالة العددية للمتغير الحقيقي x المعرفة على $R - \{-1; 1\}$ بالدالة العددية للمتغير

 $(0;ec{\imath};ec{\jmath})$ وليكن (C_f) تمثيلها البياني في المعلم المتعامد والمتجانس

1- أ) اكتب f بدون رمز القيمة المطلقة

ب) ادرس النهايات على اطراف مجال التعريف

ا احسب f'(x) ثم ادرس اشارتها f'(x)

f شكل جدول تغيرات الدالة

ہے۔ بین ان y=-x-1 و y=x+1 مستقیمین مقاربین مائلین بجوار y=x+1 ہے۔ الترتیب

4- ادرس الوضعية النسبية بالنسبة للمنحنى (C_f) والمستقيمين المقاربين المائلين

 10^{-1} بين أن المعادلة :f(x)=0 تقبل حلا وحيدا lpha في المجال f(x)=0 واعط حصرا لـ lpha سعته a

التمرين 31:

 $-\infty;-4]$ الدالة العددية للمتغير الحقيقي χ المعرفة على $-\infty;-4$ الدالة العددية للمتغير الحقيقي f

$$f(x) = x + 1 + \sqrt{x^2 + 4x}$$
 : کما یأتي

 $(0;\vec{\iota};\vec{\jmath})$ منحني الدالة f في المستوي المنسوب إلى المعلم المتعامد و التجانس (C_f)

 $+\infty$ و $-\infty$ عند f عند النهايتين للدالة f

 $+\infty$ بين ان y=2x+3 مستقيم مقارب مائل بجو ار (2

0 هل الدالة قابلة للاشتقاق عند 0 و 0

f احسب f' ثم ادرس اتجاه تغیر (4

f شكل جدول التغيرات للدالة f

 (C_f) ارسم المستقيم المقارب ثم المنحنى (6