الفرض في التَّافِي للتَّالْمِ فِي السَّالْمِ فِي السَّالْمِ فِي السَّالِي السَّالِي السَّالِي السَّالِي السَّا

المستوى: ثالثة علوم تجريبية - ثالثة تقنى رياضى

الجُزءِ الأوّلِ

 $g(x)-2g(1-x)=e^x-2e^{1-x}-3x+3$ لتكن g دالَّة عدديَّة مُعرّفة على $\mathbb R$ و تُحقّق العلاقة

- (1) أوجد عبارة g(x) بدلالم x بدلالم x أرهاد: ضع t=1-x تارةً و t=1-x تارةً أخرى (1
 - 2) أدرُس تغيّرات الدّالّة g ثُمّ شكِّل جدول تغيُّراتها.
 - h(x) = 1 g(-x) ب \mathbb{R} ب المُعرّفة على المُعرّفة على المُعرّفة على (3
- 1,84<eta<1,85 و 1,85<lpha<-1,14 أثبت أنّ المعادلة h(x)=0 تقبل حلّين lpha و lpha حيثُ lpha
 - .x استنتج إشارة كل من g(x) و g(x) تبعاً لقيم العدد الحقيقي g(x)

الجُزى الثّانين

لتكن f دالّـــة عدديّــة مُعرّفة على \mathbb{R} ب $f(x)=rac{x+g(x)}{1+g(x)}$ ب مثعام متعامد و ليكن و ليكن و ليكن مُعرّفة على معلم متعامد و متحانس للمستوى.

- أُحسُب نهايات الدّالّة f بجوار أطراف مجموعة تعريفها. فسرّ هندسيّاً النّتائج. (1
 - $f'(x)=rac{e^x imes h(x)}{ig[1+g(x)ig]^2}$ و أنّ الدّالّة f قابلة للإشتقاق على $\mathbb R$ و أنّ الدّالّة f قابلة للإشتقاق على (1 f أثبت أنّ الدّالّة f ثُمّ شكّل جدول تغيُّراتها.
 - $.(C_t)$ أحسبُ أرسم أرسم (3

الْمِيْدِ الْمِيْدِي الْمِيْدِ الْمِيْدِي الْمِيْدِ الْمِيْدِ الْمِيْدِي الْمِيْدِ الْمِيْدِ الْ

الجزءالأوّل

- مسن أجل x=x يكون لسدينا $g(t)-2g(1-t)=e^t-2e^{1-t}-3t+3....(1)$ مسن أجل t=1-x يكون لسدينا $g(1-t)-2g(t)=e^{1-t}-2e^t+3t....(2)$ بضرب المعادلة $g(1)=2e^{1-t}-2e^t+3t....(2)$ بضرب المعادلة $g(1)=2e^t-2e^t+3t....(2)$ لطرف نجد أن $g(1)=2e^t-2e^t-2e^t+3t...$ والجمع مع المعادلة $g(1)=2e^t-2e^t-2e^t+3t...$ مُعرّفة على $g(1)=2e^t-2e^t-2e^t-3t...$
- الدّالُـة g قابلـۃ للإشـتقاق علـی \mathbb{R} و دالّتهـا المشـتقّة ($g'(x)=e^x-1$

I	-∞	0	+∞
g'(x)	(<u>222</u>)	þ	+

الدّالّـۃ g متزایدة تماماً علی $\left[0,+\infty\right]$ و متناقصۃ تماماً علی $\left[-\infty,0\right]$.

 $\lim_{x \to -\infty} g(x) = +\infty$ دينا

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x \left(\frac{e^x}{x} - 1 - \frac{1}{x} \right) = +\infty$$

، و تغيُّرات الْدّالَّة g مُوضَّحْت في الجدول الآتي

ı	-∞	0	+∞
g'(x)	= 8	þ	+
g(x)	+∞ ′		_+∞

الدّالُـۃ h قابلـۃ للإشـتقاق علـی \mathbb{R} و دالّتهـا المشـتقۃ $h'(x)=e^{-x}-1$

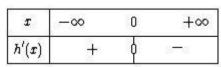
الجزءالثانين

$$f(x)=rac{e^x-1}{e^x-x}$$
 الدّالّة f مُعرّفۃ علی $\mathbb R$ ب

$$\lim_{x \to -\infty} f(x) = 0$$
 دينا (1

ومنده
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1 - \frac{1}{e^x}}{1 - \frac{x}{e^x}} = 1$$

المستقيمان $y=1:(\Delta):y=0$ و المستقيمان المستقيم الم



الدّائـۃh متناقصۃ تماماً علی $[0,+\infty]$ و متزایدة تماماً علی $[-\infty,0]$.

$$\lim_{x \to -\infty} h(x) = -\infty$$
 دينا

و تغيُّرات الدّالّـۃ h مُوضّحۃ $\lim_{x \to +\infty} h(x) = -\infty$ ي الجدول الآتی

x	-∞	0	+∞
h'(x)	+	þ	=85
h(x)	_	$\nearrow^1 \setminus$	×
(*)	+ 8		+

- - ا اشارة g(x) و h(x) مُوضّحتان في الجدولين (5

ī	-∞	α		β	1	I	-∞	0	+∞
h(x)	3 <u>110</u>	þ	+	þ	<u>200</u> 3	g(x)	+	þ	+

أفقيّـــان لــــ $\left(C_{_f}
ight)$ بجـــوار $-\infty$ و علـــى التّرتيب.

اً) الدّالْتان للإشتقاق $x\mapsto e^x$ و $x\mapsto x$ قابلتان للإشتقاق على على $\mathbb R$ و عليه تكون الدّالّـة f قابلة للإشتقاق على

$$.f'(x) = rac{e^x imes h(x)}{\left[e^x - x
ight]^2}$$
 ودانّتها المشتقة هي $\mathbb R$

$+\infty$	β	a	$-\infty$	x
-8	þ	þ +		f'(x)
	$f(\beta)$		0	f(x)
	J(P)	$f(\alpha)$	"	f(x)

لرفق ألرسم المُرفق $\left(C_{_f}
ight)$ و f(0)=0 المرسم المُرفق (3

