الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الموسم الدراسي: 2020/2019

القسم: 3 ع تج 02

المدة: $\ln(e^2)$ ساعات.

مديرية التربية لولاية باتنة ثانوية وادى الماء

التاريخ: 11/13/2019

الفرض الثاني للثلاثي الأول في مادة الرياضيات

 $f(x) = (-ax^3 + bx^2)e^{-x+1}$ نعتبر الدالة العددية $f(x) = (-ax^3 + bx^2)e^{-x+1}$

 $(0,\vec{i},\vec{j})$ مثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_{i},\vec{i},\vec{j}) .

 $(C_{\rm f})$ عين العددان الحقيقيان $(C_{\rm f})$ بحيث $(C_{\rm f})$ يقطع حامل محور الفواصل في النقطة $(C_{\rm f})$ خات الفاصلة $(C_{\rm f})$ عند النقطة $(C_{\rm f})$ عند النقطة $(C_{\rm f})$

a = 1 نضع a = 1

 $\lim_{x\to\infty} f(x) \leftarrow (1)$

. $\lim_{x \to +\infty} f(x)$: بین آنه من أجل كل عدد حقیقي $\lim_{x \to +\infty} f(x) = \frac{-x^3}{e^x} e^1 + 2 \frac{x^2}{e^x} e^1$: $\frac{x^2}{e^x} e^1$ عدد حقیقی

استنتج وجود مستقيم مقارب للمنحنى (C_f) يطلب تعيين معادلة له.

 $f'(x) = x(x^2 - 5x + 4)e^{-x+1}$ بين أنه من أجل كل عدد حقيقي x

 $[f(4) = -32e^{-3}]$. أستنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها.

.2 أكتب معادلة الماس (T)للمنحنى (C_f) عند النقطة ذات الفاصلة (3

 $h(x) = x^2 e^{-x+2} - 4$: کما یلی $h(x) = x^2 e^{-x+2} - 4$ کما یلی $h(x) = x^2 e^{-x+2} - 4$

أ) ادرس اتجاه تغير الدالة h ،ثم استنتج اشارة h(x) .

 $f(x) - \left[-4e^{-1}(x-2) \right] = (-x+2)e^{-1} \times h(x)$:x بين أنه من أجل كل عدد حقيقي

و حدد عندئذ وضعية المنحنى $(C_{\rm f})$ بالنسبة إلى (T)على المجال $]0;+\infty$

ج) هل المنحني (C_{f}) يقبل نقطة انعطاف ؟برر.

 $[0;+\infty[$ ارسم الماس (T) و المنحنى $(C_{\rm f})$ على المجال ا(T)

 \mathbf{m} وسيط حقيقي. $\mathbf{y} = \mathbf{m}\mathbf{x} - 2\ln(\mathbf{e})\mathbf{m}$ الذي معادلته $\mathbf{y} = \mathbf{m}\mathbf{x} - 2\ln(\mathbf{e})\mathbf{m}$ وسيط حقيقي.

أ) بين أن جميع المستقيات تشمل النقطة الثابتة (N(2;ln1).

 $(C_{
m f})$ ناقش، حسب قيم الوسيط الحقيقي m ، عدد نقاط تقاطع المستقيم ($\Delta_{
m m}$) والمنحني $(C_{
m f})$

 $g(x) = f\left(\frac{1}{x}\right)$ ب: $g(x) = f\left(\frac{1}{x}\right)$ ب: g(x) = 0 الدالة العددية والمعرفة على المجال g(x) = 0

 $\sqrt{\lim_{x\to 0} g(x) = 0}$ و $\lim_{x\to \infty} g(x) = 0$ و ا $\lim_{x\to 0} g(x) = 0$ و ا $\lim_{x\to 0} g(x) = 0$