بطاقة مذكرة التسيير حصة تعليم وتعلم

الوسائل التعليمية:

سبورة، أقلام، ممسحة.

المراجع: المنهاج ،التوزيع السنوي ،الوثيقة المرفقة،دليل الأستاذ، الكتاب المدرسي ، الجديد في الرياضيات منتديات التعليم

ميدان التعلم: الهندسة المستوية

المحور: الأعداد المركبة.

الموضوع: التشابه المباشر

الأستاذة: بغدادي ماجدة

القسم: 3ع تج

التاريخ: 18-2014-03

المدة: ساعة

النهيئة

الكفاءات المستهدفة:

- 💠 التعرف على تشابه مباشر
- التعبير عن تشابه مباشر بالأعداد المركبة.

المكتسبات القبلية:

- خواص التناسب.
- علاقة شال للزوايا الموجهة.
- التحويلا النقطية و الأعداد المركبة.

المراحل الوقت المحتوى المهارات

في كل ما يأتي المستوى المركب منسوب إلى معلم متعامد متجانس

 $O; \overrightarrow{OI}, \overrightarrow{OJ}$

نشاط: (تعريف التشابه المباشر – الكتابة المركبة)

ليكن التحويل النقطي S الذي يرفق بكل نقطة M من المستوي لاحقتها Z النقطة M من المستوي لاحقتها Z'=2iZ+1

ينب الترتيب D ، C ، B ، A . $Z_D = -2 + i$ ، $Z_C = 2 + i$ ، $Z_B = 1 - i$ ، $Z_A = 1 + i$

- B ، D ، C ، B ، A । B ، B .
 - $.\frac{A'B'}{C'D'} = \frac{AB}{CD}$: بين أن
 - $(\overrightarrow{CD}; \overrightarrow{AB})$ احسب أقياس الزوايا المو جهة ($(\overrightarrow{C'D'}; \overrightarrow{A'B'})$) المرابقة عارن بينهما.

انجاز النشاط 01:

التعرف على طبيعة تحويل نقطي إنطلاقا من كتابته المركبة

15د

 $C \cdot B \cdot A$ صور النقط $D' \cdot C' \cdot B' \cdot A'$ صور النقط $D \cdot C' \cdot B' \cdot A'$ على الترتيب بالتحويل $D \cdot C' \cdot B' \cdot A'$

Z' = 2iZ + 1 الدينا:

$$Z_{A'}=2iZ_A+1$$
 عفناه: $S(A')=A$ •
$$=2i(1+i)+1$$

$$=2i-2+1$$

$$=2i-1$$

$$Z_{A'} = -1 + 2i$$

$$Z_{B'}=2iZ_B+1$$
 عفناه:
$$S(B')=B$$

$$=2i(1-i)+1$$

$$=2i+2+1$$

$$=2i+3$$

$$Z_{B'} = 3 + 2i$$

$$Z_{C'}=2iZ_C+1$$
 عفناه: $S(C')=C$ •
$$=2i(2+i)+1$$

$$=4i-2+1$$

$$=4i-1$$

$$Z_{C'} = -1 + 4i$$

$$Z_{D'}=2iZ_D+1$$
 معناه: $S(D')=D$ •
$$=2i(-2+i)+1$$

$$=-4i-1$$

$$Z_{D'} = -1 - 4i$$

$$\frac{A'B'}{C'D'} = \frac{AB}{CD}$$
 : نبین أن

 $:\frac{AB}{CD}$ = \bullet

$$\frac{Z_{B'} - Z_{A'}}{Z_{D'} - Z_{C'}} = \frac{3 + 2i + 1 - 2i}{-1 - 4i + 1 - 4i} = \frac{4}{-8i} = \frac{1}{2}i$$

$$\left| \frac{Z_{B'} - Z_{A'}}{Z_{D'} - Z_{C'}} \right| = \left| \frac{1}{2}i \right| = \frac{1}{2}$$
 ومنه $\arg \left(\frac{Z_{B'} - Z_{A'}}{Z_{D'} - Z_{C'}} \right) = \frac{\pi}{2}$

التعرف على طبيعة تحويل نقطي إنطلاقا من كتابته المركبة

$: \frac{AB}{CD}$ حساب •

$$\frac{Z_B - Z_A}{Z_D - Z_C} = \frac{1 - i - 1 - i}{-2 + i - 2 - i} = \frac{-2i}{-4} = \frac{1}{2}i$$

$$\left| \frac{Z_B - Z_A}{Z_D - Z_C} \right| = \left| \frac{1}{2}i \right| = \frac{1}{2}$$
 o $\arg \left(\frac{Z_B - Z_A}{Z_D - Z_C} \right) = \frac{\pi}{2}$

 $(\overrightarrow{CD}; \overrightarrow{AB})$ ($\overrightarrow{C'D'}; \overrightarrow{A'B'}$) حساب أقياس الزوايا المو جهة (3 ثم المقارنة بينهما.

$$(\overrightarrow{C'D'}; \overrightarrow{A'B'}) = \arg\left(\frac{Z_{B'} - Z_{A'}}{Z_{D'} - Z_{C'}}\right) = \arg\left(\frac{1}{2}i\right) = \frac{\pi}{2}$$

$$(\overrightarrow{CD}; \overrightarrow{AB}) = \arg\left(\frac{Z_B - Z_A}{Z_D - Z_C}\right) = \arg\left(\frac{1}{2}i\right) = \frac{\pi}{2}$$

$$(\overrightarrow{C'D'}; \overrightarrow{A'B'}) = (\overrightarrow{CD}; \overrightarrow{AB}) = \frac{\pi}{2}$$
 نلاحظ أن:

1- تعریف

القول عن تحويل نقطي S أنه تشابه مباشر يعني: أن S يحافظ على نسب المسافات و على الزوايا الموجهة

أي من أجل كل نقط $P \cdot N \cdot M$ و $P \neq Q \cdot M \neq N$ من المستوى صور ها $P \cdot N \cdot N \cdot N \cdot N \cdot Q$ على الترتيب فإن:

$$(\overrightarrow{MN};\overrightarrow{PQ}) = (\overrightarrow{M'N'};\overrightarrow{P'Q'}) \quad \mathcal{P} = \frac{P'Q'}{MN'} = \frac{P'Q'}{M'N'}$$

2- نسبة تشابه مباشر

 $\frac{P'Q'}{PQ} = \frac{M'N'}{MN}$: نستنتج $\frac{PQ}{MN} = \frac{P'Q'}{M'N'}$ أي $\frac{P'Q'}{MN'} = \frac{M'N'}{M'N'} = \frac{M'N'}{M'N'}$ ومنه $\frac{P'Q'}{MN'} = \frac{M'N'}{M'N'} = \frac{M'N'}{M'N'}$

التشابه المباشر S يضرب المسافات في عدد حقيقي موجب تماما K العدد K يسمى نسبة التشابه المباشر S .

405

عناصر التشابه المباشر

التعرف

205

البناء

3 - زاویة تشابه مباشر

تعریف: S تشابه مباشر من المستوي. يحافظ على الزوايا الموجهة $(\overrightarrow{PQ}, \overrightarrow{P'}, \overrightarrow{P'}, \overrightarrow{P'}, \overrightarrow{P'})$.

S تسمى زاوية التشابه المباشر ($\overrightarrow{MN}; \overrightarrow{M'N'}$) تسمى زاوية التشابه المباشر

4- الكتابة المركبة للتشابه مباشر

خاصية 01:

كل تشابه مباشر من المستوي المركب له كتابة مركبة من $a \neq 0$ و عددان مركبان و z' = az + b الشكل

 $a \neq 0$ و عددان مرکبان و $a \neq 0$

إذا كان S تحويلا نقطيا من المستوي المركب له كتابة S مركبة من الشكل S' = az + b فإن S' = az + b مركبة من الشكل S' = az + b فإن S' = az + b في المستد S' = az + b أن المستد S' = az + b

مثال تطبيقى:

Z' = (1+i)Z + 2 تشابه مباشر له العبارة المركبة: Z' = (1+i)Z + 2 النقطة M' لاحقتها Z'

- 1) ما هي نسبة S ؟
- S(B) فقطة لاحقتها 2i ،ماهي لاحقة (B) وماذا تستنتج؟

<u>الحل:</u>

- و منه نسبة التشابه a=1+i و منه نسبة التشابه a=1+i (1) $|a|=\sqrt{2}$
 - $Z_B=(1+i)(2i)+2$ هي S(B) لاحقة النقطة (2

=2i

ومنه B صامدة بالتحويل S

التعبير عن تشابه مباشر بالأعداد المركبة

10د

405

تطبيق(الموضوع الثاني "bac 2012"):

الجزء الثاني:

، $Z_A=6$ نقط من المستوي لو احقها على الترتيب C ، B ، A . $Z_C=3-i\sqrt{3}$ ، $Z_B=3+i\sqrt{3}$

- أ. أكتب كلا من Z_{c} ، Z_{B} ، Z_{A} على الشكل الأسي.
- ب. أكتب العدد المركب $\frac{Z_A-Z_B}{Z_A-Z_C}$ على الشكل الجبري، ثم على الشكل الأسى.
 - ج. استنتج طبيعة المثلث ABC.

الجزء الثالث:

اليكن $\frac{\pi}{2}$ التشابه المباشر الذي مركزه C ، نسبته $\sqrt{3}$ و زاويته $\frac{\pi}{2}$

- أ. جد الكتابة المركبة للتشابه ع.
- S بالتشابه A عين $Z_{A'}$ عين عين $Z_{A'}$ بالتشابه
 - 5. بين أن النقط في استقامية

حل التطبيق:

الجزء الثانى:

الاستثمار

 $Z_A=6$ الترتيب واحقها على الترتيب و $C\cdot B\cdot A$. $Z_C=3-i\sqrt{3}\cdot Z_B=3+i\sqrt{3}$

أ. كتابة كلا من Z_{c} ، Z_{B} ، Z_{A} على الشكل الأسي.

$$Z_B = 3 + i\sqrt{3} = 2\sqrt{3}e^{i\frac{\pi}{6}}$$
 $Z_A = 6 = 6e^{i\theta}$

$$Z_C = 3 - i\sqrt{3} = 2\sqrt{3}e^{i-\frac{\pi}{6}}$$

 $\frac{Z_A-Z_B}{Z_A-Z_C}$ على الشكل الجبري، ثم على الشكل الأسى. على الشكل الأسى.

- – –

$$\frac{Z_A - Z_B}{Z_A - Z_C} = \frac{6 - 3 - i\sqrt{3}}{6 - 3 + i\sqrt{3}} = \frac{3 - i\sqrt{3}}{3 + i\sqrt{3}} \cdot \frac{3 - i\sqrt{3}}{3 + i\sqrt{3}}$$

$$= \frac{\left(3 - i\sqrt{3}\right)^{2}}{3^{2} + 3} = \frac{9 - 3 - 6i\sqrt{3}}{12} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$
$$\frac{Z_{A} - Z_{B}}{Z_{A} - Z_{C}} = \frac{1}{2} - \frac{\sqrt{3}}{2}i = e^{i\frac{\pi}{3}}$$

ج. استنتج طبيعة المثلث ABC.

220د

10د

توظیف الکتابة المرکبة المباشر في حل في حل تمرین شامل للمحور

$\frac{Z_A - Z_B}{Z_A - Z_C} = e^{i\frac{\pi}{3}}$	ا من السؤال (ب):	لدين
--	------------------	------

هذا يعنى أن ABC مثلث متساوي الساقين.

$$Z_A - Z_B = e^{i\frac{\pi}{3}}(Z_A - Z_C)$$
 :2 طریقة

$$=i\sqrt{3}z-4i\sqrt{3}:S$$
 العبارة المركبة للتشابه (3) العبارة المركبة للتشابه $z_{A'}=2i\sqrt{3}$

ملاحظات عامة حول الحصية:

لتكن

و ' M و ' M على z'=x'+iy' و ' z=x+iy الترتيب

ومنه:

Z' = 2iz + 3 + i

إذن $k=\left|2i\right|=2$ بسبته و زاویته باشر نسبته و اولیته

$$q = \arg(2i) = \frac{\pi}{2}$$

z' = az + b الكتابة المركبة : من الشكل

$$z_{C} = 3 - i\sqrt{3} = 2\sqrt{3}e^{-i\frac{\pi}{6}}, z_{B} = 3 + i\sqrt{3} = 2\sqrt{3}e^{i\frac{\pi}{6}}, z_{A} = 6 = 6e^{i0}(1/2)$$

$$\frac{z_{A} - z_{B}}{z_{A} - z_{C}} = e^{i(-\frac{\pi}{3})}, \frac{z_{A} - z_{B}}{z_{A} - z_{C}} = \frac{1}{2} - i\frac{\sqrt{3}}{2} \quad (\because$$

$$A$$
 ج) ج $z_A - z_B = e^{-i\frac{\pi}{3}}(z_A - z_C)$ ج $z_A - z_B = e^{-i\frac{\pi}{3}}(z_A - z_C)$ جا بالدور ان الذي مركزه $z_A - z_B = e^{-i\frac{\pi}{3}}$ و زاويته $z_A - z_B = e^{-i\frac{\pi}{3}}$ او نامثلث $z_A - z_B = e^{-i\frac{\pi}{3}}$ و زاويته $z_A - z_B = e^{-i\frac{\pi}{3}}$

110