1. الدوال الأصلية

تعريف

ودالة عددية معرفة على مجال I. نقول أن الدالة F أصلية للدالة f إذا و فقط إذا كانت F قابلة للاشتقاق على F، و من أجل كل F'(x) = f(x) من F'(x) = f(x)

مبرهنة

الدالة f تقبل دالة أصلية F على مجال I إذا و فقط إذا كانت الدالة f مستمرة على I

خاصية

دالة عددية معرفة على مجال I. نفرض أن F دالة أصلية للدالة على I مجموعة الدوال الأصلية للدالة f على المجال I هي الدوال $C \in \mathbb{R}$ حيث G(x) = F(x) + C

خاصية

ردالة عددية تقبل دالة أصلية على مجال χ_0 عدد حقيقي كيفي من I و χ_0 عدد حقيقي كيفي من χ_0 عدد حقيقي كيفي. توجد دالة أصلية وحيدة χ_0 للدالة χ_0 على المجال χ_0 تحقق الشرط χ_0

الدوال الأصلية لدوال مألوفة

الدالة f	الدالة الأصلية	ملاحظات		
k	kx + c	$k, c \in \mathbb{R}$		
x	$\frac{\frac{1}{2}x^2 + c}{\frac{1}{n+1}x^{n+1} + c}$	$x \in \mathbb{R}$		
x^n	$\frac{1}{x^{n+1}}x^{n+1} + c$	$n \in \mathbb{N}^*$		
	n+1	$x \in \mathbb{R}$		
$\frac{\frac{1}{x^2}}{\frac{1}{x^n}}$	$-\frac{1}{x}+c$	$x \in \mathbb{R}^*$		
1	$-\frac{1}{(n-1)x^{n-1}}+c$	$x \in \mathbb{R}^*$		
$\overline{x^n}$	$(n-1)x^{n-1}$	$n \ge 2$		
1	$2\sqrt{x} + c$	$x \in \mathbb{R}_+^*$		
\sqrt{x}				
sin x	$-\cos x$	$x \in \mathbb{R}$		
$\cos x$	sin x	$x \in \mathbb{R}$		
e^x	$e^x + c$	$x \in \mathbb{R}$		
1	$\ln x + c$]0; +∞[
$\frac{\overline{x}}{x}$				

الدوال الأصلية و العمليات على الدوال

الدالة f	الدالة الأصلية	على المجال
u + v	U+V	I
λи	λU	I
u'u	$\frac{1}{2}u^2 + c$	I
$u'u^n$	$\frac{1}{n+1}u^{n+1}+c$	I
$\frac{u'}{u}$	$\ln u + c$	$x \in I/u(x) > 0$
$\frac{u}{u'}$ $\frac{u'}{u^2}$	$-\frac{1}{u}+c$	$x \in I, u(x) \neq 0$
$\frac{u'}{u^n}$	$-\frac{1}{(n-1)u^{n-1}}+c$	$x \in I, u(x) \neq 0$ $n \ge 2$
u'e ^u	e^u	I
<u>u'</u>	$2\sqrt{u} + c$	$x \in I/u(x) > 0$
$\overline{\sqrt{u}}$		

2. الحساب التكاملي

تعريف

لتكن f دالة مستمرة على مجال I، a و b عددان حقيقيان من I و F دالة أصلية للدالة f على I. يسمى العدد الحقيقي F(b)-F(a) التكامل من f(x) و نرمز له بالرمز f(x) و نكتب: a

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

خواص التكامل

 $\int_a^b f(x)dx \ge 0$ فإن [a;] على [a;] على إذا كان

 $\int_a^b f(x)dx \le \int_a^b g(x)dx$ فإن [a;b] على وزا كان أذا كان

 $\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$ علاقة شال:

 $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$ خاصیة التناظر:

 $\int_a^b [(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$ خواص الخطية:

$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

المكاملة بالتجزئة

v' و u' دالتان قابلتان للاشتقاق على مجال I حيث u' و u مستمرتان على المجال I. من أجل كل u و u من u لدينا: $\int_a^b u(x)v'(x)dx = [u(x)v(x)]_a^b - \int_a^b u'(x)v(x)dx$

طريقة: تطبيقيا لحساب التكامل التكامل نتبع لنبع المخطط طريقة: تطبيقيا لحساب التكامل ا

$$\begin{array}{ccc}
u(x) & u'(x) \\
\downarrow v'(x) & v(x)
\end{array}
\longrightarrow \begin{bmatrix} u(x)v(x)\end{bmatrix}_a^b - \int_a^b u'(x)v(x)dx$$

الدالة الأصلية لدالة التي تنعدم من أجل قيمة

F لتكن f دالة مستمرة على مجال I، و a عددا حقيقيا من I. الدالة f حيث $F(x)=\int_a^x f(t)dt$ هي الدالة الأصلية الوحيدة للدالة f على المجال I التي تنعدم من أجل a

حساب المساحات

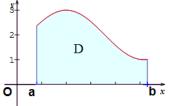
المستوي منسوب إلى معلم متعامد، (C_g) و (C_f) المنحنيان الممثلان لدالتين f و g على الترتيب.

مساحة حيز محدد بمنحنى

 (C_f) نرمز بـ A إلى مساحة حيز D من المستوي محدد بالمنحنى x=b و محور الفواصل و المستقيمين ذوا المعادلتين x=b في محساب المساحة A نميز ثلاث حالات:

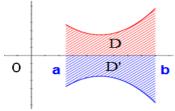
حالة دالة موجبة على المجال [a; b]

إذا كان (C_f) يقع فوق محور الفواصل على المجال $A = \int_a^b f(x) dx$



حالة دالة سالبة على المجال [a; b]

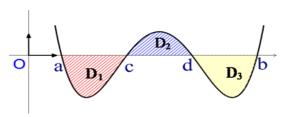
اذا کان (C_f) يقع تحت محور الفواصل على المجال $A = \int_a^b -f(x) dx$



حالة دالة تغير إشارتها على المجال [a; b]

لحساب المساحة A نقوم بحساب تكامل الدالة f على المجالات التي يكون فيها (C_f) يقع فوق محور الفواصل و بحساب تكامل الدالة f على المجالات التي يكون فيها (C_f) يقع تحت محور الفواصل ثم نقوم بجمع هذه المساحات. فمثلا في الشكل الموالي المساحة A تساوي:

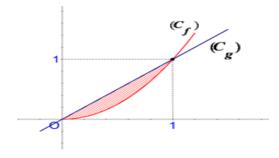
$$A = -\int_a^c f(x)dx + \int_c^d f(x)dx - \int_d^b f(x)dx$$



مساحة حيز محدد بمنحنيين

 (C_f) نرمز بـ A إلى مساحة حيز D من المستوي محدد بالمنحنى x=b و x=a المنحنى (C_g) و المستقيمين ذوا المعادلتين

- وزا کان [a;b] يقع فوق (C_g) على المجال (C_f) فإن: $A = \int_a^b f(x) g(x) dx$
- وان: [a;b] على المجال (C_g) يقع تحت (C_f) على المجال $A=\int_a^b g(x)-f(x)dx$



القيمة المتوسطة لدالة على مجال

لتكن f دالة مستمرة على مجال [a;b]. القيمة المتوسطة للدالة $m=rac{1}{b-a}\int_a^b f(x)dx$ حيث: $m=rac{1}{b-a}\int_a^b f(x)dx$ المجال